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5 Finitary Iteration in Enriched Settings

Example 5.3.4. Scott’s model of the untyped λ-calculus. The formulas t of the λ-
calculus have the form

t ::= x | tt | λx.t,

where x ranges through a countable set V of variables. The meaning of t1t2 is ‘application’:
we evaluate t1 (a function) in t2. The meaning of λx.t is ‘λ-abstraction’: this function
takes a value a and responds with t[a/x], the term t in which x is substituted by a. A
sound model of the λ-calculus can be obtained from every cpo D equipped with a split
monomorphism

m : [D,D] ↣ D

with a splitting e : D ↠ [D,D]: given a valuation v : V → D, the interpretation [[t]]v of a
λ-term t in D is defined as follows:

[[x]]v = v(x), [[t1t2]]v = e([[t1]]v)([[t2]]v), [[λx.t]]v = m(h),

where h : D → D is the function that maps d ∈ D to [[t]]v[x:=d] and v[x := d] is the
modificatication of v that maps x to d: v[x := d](x) = d and v[x := d](y) = v(y)
for every y ̸= x. It is not difficult to prove that h is continuous and that the above
interpretation makes D a model of the λ-calculus (cf. [3, Thm. 3.2.12]).
Note that for a set D that is not a singleton, there is no injection [D,D] ↣ D, since

[D,D] has larger cardinality than D.
Scott [4] decided to use the cartesian closed category of continuous lattices to obtain a

model of the λ-calculus. But Smyth and Plotkin [5] made it clear that working in CPO⊥
is sufficient (and simpler). In fact, consider the locally continuous functor

F : CPOop
⊥ × CPO⊥ → CPO⊥ with F (X,Y ) = [X,Y ]⊥,

which adds a new least element to the cpo [X,Y ]. If D is the initial algebra for FE

(Theorem 5.3.1), then
D ∼= [D,D]⊥
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is a non-trivial model of λ-calculus (cf. Abramsky [1], Abramsky and Ong [2]). Indeed,
we obtain a split monomorphism in CPO:

m =
(
[D,D] [D,D]⊥ D

∼= )
.
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Proof sketch for Prop. 7.3.5. In the first display the flat equation morphism is

e = F inr + idA : FA+A → F (FA+A) +A.
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