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Part Il
Non-linear simultaneous equations



6
Case studies of non-linear simultaneous equations

(i) Solution of Kirchhoff’s laws in a non-linear direct cemt (DC)
circuit (Section6.1), and

(i) Solution of Kirchhoff’s laws in a linear alternating ment (AC)
circuit where the variables of interest are not currents\aniichges
but instead are power (and “reactive power”) injections
(Section6.2).



6.1 Analysis of a non-linear direct current circuit
6.1.1 Motivation

e Predict the behavior of the circuit without actually buridia prototype.
e Predict the effect of changes in component values on thaitlvehavior.

6.1.2 Formulation
6.1.2.1 Device models
Terminal characteristics

e For a resistor, the current is a linear function of voltage.



Non-linear devices
e Diode model:

_ - _ _ qVdiode B
YWiiode € R, idiode Vdiode) = Isat [eXIO< N&T ) 1] . (6.1)
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Non-linear devices, continued
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Choice of terminal model
e Again, Occam’s razor is important in selecting a terminatielo



6.1.2.2 Kirchhoff’s current law

S R R

O B R g

. . Fig. 6.3. A simple non-
linear circuit.




Kirchhoff’s current law, continued
e By Kirchhoff’s current law applied to nodes 1, 2, 3, 4:

1 .
(Ea) X1+ip(Xg—X2) —11 = 0O,

—ip(Xg —X2) + (F:QLC F§d>X2+< F\}d>X3 = 0,
( é)xﬁ(éd F;Le é)xw( é)xALZO,

(—%)m+<%)m+ig(x4) = 0.

e As in the direct current linear circuit case study in Sectddh the
equation for the datum nodernsdundant.

(6.2)
(6.3)
(6.4)

(6.5)



6.1.2.3 Non-linear equations
e Define thevector function g: R* — R* by:

wx e R4 g(x) = e (R% +%) et <_%) 1 (66

e If we write g(x) = 0 then we have reproducef.p)—(6.5).

e These are a set of non-linear simultaneous equations.

e To represent linear equatioAx = b in this way we would define
g:R"— RMby:

Vx € R" g(x) = Ax—h.



6.1.3 Circuit changes

e Changes in the values of resistors, current sources, oe giachmeters
will change the functional form of corresponding entrieg)in

e For example, if a resistor or a diode between nabasdk changes then
the functional form ofy, andgyk will change.

e If a resistor, current source, or diode between nbded the datum node
changes then the functional form@fwill change.

e Changes in the diode could be due to changesym, or T, for example,
and would change the functional relationship between thdelcurrent
and diode voltage.



6.1.4 Problem characteristics
6.1.4.1 Numbers of variables and equations

e As in the linear circuit, we have the same number of variahtes
equations.

6.1.4.2 Number of solutions

e The current to voltage characteristic of a diode is strintlynotonically
increasing so that increasing voltage corresponds toasarg current.

e Strict monotonicity of component model functions is suéfidi to
guarantee that there is at most one solution for the circuit.

e Not every two-terminal electronic component has a strictnotonically
increasing terminal model.



Number of solutions, continued

e For example, aunnel diode has a characteristic that is not strictly
monotonically increasing.
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6.1.4.3 Sparsity

e The vector functiorg is “sparse” in the sense that a typical entrygof
depends only on a few entries af

e Although we cannot store the representation of a non-lifeastion as a
sparse matrix, we can still store the parameters necessapgtify the
functions in a sparse structure as suggested in Fgudre

lsat| N | T

Fig. 6.5. Storage of pa-
R R rameters for diode and
resistor as linked lists.

6.1.4.4 Non-existence of direct algorithms

e Because of the non-linear diode elements, there is in genedirect
algorithm for solving an arbitrary circuit consisting ofrecent sources,
resistors, and diodes.



6.2 Analysis of an electric power system
6.2.1 Motivation

e It is important to be able to predict the power flows on lined e
voltage magnitudes at loads in advance of actual operations



6.2.2 Formulation
6.2.2.1 Variables
Phasors

e \We can use complex numbers, calf@thsors to represent the magnitude
and angle of the AC voltages and currents at a fixed frequency.

e Themagnitude of the complex number represents the root-mean-square
magnitude of the voltage or current.

e Theangleof the complex number represents the angular displacement
between the sinusoidal voltage or current and a referencsaid.

Reference angle

e The angles of the voltages and currents in the system woluitiahge if
we changed the angle of our reference sinusoid, but thisduoare no
effect on the physical system.

e \We can therefore arbitrarily assign the angle at one of tise$to be zero
and measure all the other angles with respect to this angle.

e We call this bus theeference bus



Representation of complex numbers

e To represent a complex numbBémwith real numbers requires two real
numbers, either:
— themagnitude |V| and theangle /V, so thatv = |V|exp(/V /1), or
— thereal O{V} andimaginary [J{V } parts, so that
V=0{V}+O{V}/-L
e Since we need to compare voltage magnitudes to limits, weeglesent
voltages as magnitudes and angles.



Scaling and “per unit”

e There are voltage transformers throughout a typical poyses.
e This means that the nominal voltage magnitude varies ceredidy
throughout the system by several orders of magnitude.
e \We scale the voltage magnitude so that an actual value of Y24 the
110 kV part of the system would be represented by a scalee wdiu
121 kV
110 kV
e While an actual value of 688.5 kV in the 765 kV part of the sygsteould
be represented by a scaled value of:
6885 kV

765 kV

—11,

0.9.



6.2.2.2 Symmetry
Three-phase circuits

e Generation-transmission systems are usually operateala@asded
three-phase systems

- n
transmission
generator | line | load
Zp

By
i

|
n’ neutral [ Zn ] n’
| A |
b | | | Fig. 6.6. An example
Zp balanced  three-phase
L — _— system.



Per-phase equivalent
e The behavior of a balanced three-phase circuit can be coahple
determined from the behavior ofpeer-phase equivalent circuit
e Figure6.7 shows the a-phase equivalent circuit of the three-phaseitir
of Figure6.6.
transmission

generator line load
a1z
] Fig. 6.7. Per-phase
Z. equivalent circuit for
neutral f[he_three-phase circuit
In Figure6.6.

Model transformation

e The determination of the behavior of a three-phase systevagh the
analysis of a related per-phase equivalent is an exampteodel
transformation that utilizes thesymmetry of the three-phase circuit.



6.2.2.3 Transmission lines
e \We can represent the terminal behaviodddtributed parameter
circuits with ateequivalentcircuit.

e Each component has an impedance (or, equivalentigdamttance)
determined by the characteristics of the line.

K—Tfsene: T "
S S
h h : :
u u Fig. 6.8. Equivalent
A A 1t circuit of per-phase
l neutral l equivalent of transmis-

sion line.



6.2.2.4 Bus admittance matrix and power flow equations
e Consider the per-phase equivalent of a three bus, thre&déinemission

system as illustrated in Figue9.

e For each bug = 1,2, 3, the pair of shunttelements joining nodéto
neutral can be combined together to form a single shunt eleme

T [I]E[i 2

] —
L 3 L]
[I] neutral |j i]

Fig. 6.9. Per-phase
equivalent circuit model
for three bus, three line
system.



Bus admittance matrix and power flow equations, continued

e This yields a circuit with:
— one element corresponding to each of the biéseq, 2, 3, joining node

¢ to neutral, and
— one element corresponding to each line,

e as illustrated in Figuré.10

1 [ Yio |
[ Vi3] Fig. 6.10. Per-phase
equivalent circuit model
I for three bus, three line
neutral system with parallel

components combined.

<




Bus admittance matrix and power flow equations, continued

e Let us writeY, for the admittance of the element joining noti® neutral,
and
e Y, for the admittance of the series element correspondingiteegdining
buses andk.
e The series element is most easily characterized in ternis whpedance.
e For a series impedan@y = Ry + Xikv/—1 between buseéandk, the
corresponding admittand@ is given by:
1
Yfk - T
Zik
1
Rok + X/ —1
1 " Rk — Xokv/ —1
Rk +Xkv =1 Rk — X/ —1
_ Ra—Xpe/-1
(Rek)? + (X )?

(6.7)



Bus admittance matrix and power flow equations, continued

e Using Kirchhoff’s laws, we can again obtain a relationshiphe form
AV = | between current and voltage, where:

Yg + Zk’eJ(ﬁ)Yka if ¢ = k,
VO, K, Ay = —Yk, if ke J(¢)ore e J(k), (6.8)
0, otherwise,

e where]J(¢) is the set of buses joined directly by a transmission lineu® b
l.
e Ais called thebus admittance matrix.



6.2.2.5 Generators and loads

e When electricity is bought and sold, the power and energyrere
guantities that are usually priced, not the voltage or curre

e However, real power does not completely describe the ictiera
between generators or loads and the system.

e We also have to characterize the injectedctive power.

e \We can combine the real and reactive powers intactiraplex power,
which is the sum of:

the real power, and
v/ —1times the reactive power.



Generators and loads, continued

e The usefulness of this representation is that, for exantipéecomplex
powerS injected at nodé into the network is given by:

& — V€|2<7
e Where the superscriptindicatescomplex conjugate

e The current, equals the sum of:

the current flowing into the shunt elemefat and
the sum of the currents flowing into each line connecting a bus
k € J(¢) through admittanc¥y.

e \We can substitute for the currents to obtain:
S = Vi[ANe+ Y A,
kel (f)

= VIPAL+ Y ARV (6.9)
kel ()



Generators and loads, continued
o Let Ak = Gy + Bikv/—1, V2, k, where we note that bys(7) and 6.9):
— we have thaG < 0 andBy > 0 for £ # k, and

— we have tha6,, > 0 and the sign oBy, is indeterminate but typically
less than zero;

o letS =P, + Qv —1,V¢, with:
— for generator buse®, > 0 andQy is typically positive,
— for load busesk, < 0 andQ, < O;

e and letV, = uyexp(6,v/—1), V¢, with:
— the voltage magnitude, ~ 1 in scaled units to satisfy voltage limits,
— the voltage angl8, typically between-11/4 andrt/4 radians.



Generators and loads, continued
e Then we can separat6é.) into real and imaginary parts:

PP= 5 Uuu|Gucos6 — 6k + Busin(8, — 8y)], (6.10)
keI (OU{0y

Q = Z Uguk[ngSin(eg — ek) — ngCOieg — ek)]. (6.11)
keI ({0}

e The equationsd.10 and 6.11), which are called theower flow
equality constraints, must be satisfied at each blus



6.2.2.6 The power flow problem
Power balance
e A bus with a specified real and reactive power is callé&{xbus.
e We specify:
— the real and reactive generations at the geneR(fpbuses according to
the generator control settings, and

— the real and reactive power at the Id@ buses according to supplied
data.

e However, we cannot specify the injected power at all the bgsgece this
would typically violate the first law of thermodynamics!



Reference bus

e A traditional, butad hocapproach to finding a solution to the equations is
to single out the reference bus.

e At this bus, instead of specifying injected real and reactiower, we
specify the voltage magnitude.

e The reference generator is then assumed to produce whaaesded to
“balance” the real and reactive power for the rest of theesysassuming
that such a solution exists.

e We re-interpreP, andQ to be variables in our formulation and have
eliminated these variables by writing them as a functiorhefrest of the
variables.

e The reference bus supplies whatever power is hecessarp\i@rp
balance.



6.2.2.7 Non-linear equations

e \We havenpg PQ buses, including both thieQ generators and the loads.

e Letn = 2npg and define a vector € R" consisting of the voltage
magnitudes and angles at tR® buses.

e For every bu¢ (that is, including the reference bus as well asRii@
buses) define functiong : R" — R andg, : R" — R by:

XERYL p(X) = Y Uk[Gucos(B; — Bk) + Bucsin(6, — Bi)] — P,
ke (TU{0}
(6.12)
XERYNQ(X) = ) U[Gasin(8; — B) — BuccosB; — Bk)] — Qr.
ke (D10}
(6.13)

e The functionsp, andg, represent the net real and reactive power flow,
respectively, from buég into the rest of the system.

e Kirchhoff’s laws require that the net real and reactive flaw of a bus
must be zero.



Non-linear equations, continued

e Finally, define a vector functiog: R" — R" that includes§.12
and 6.13 for all thePQ buses, but omit5(12 and ©.13 for the
reference bus.

e We solve:

g(x) = 0. (6.14)
¢ In summary, solving Kirchhoff's equations for the elecpim~er network
has been transformed into an equivalent problem:

() solve 6.14), which is a system of non-linear simultaneous
equations, and
(ii) substitute into 6.10 and ©.11) for the reference bus.



6.2.3 Circuit changes

e If a real power injection changes at a dudhen the entries ig
corresponding tg, will change.

e If a reactive power injection changes at a ljuken the entries ig
corresponding tg, will change.

e If a transmission line between buséandk changes, then the entriesgf
corresponding t@y, qs, px, andgx will change.

e The entries in the admittance matdwill change in a manner analogous
to the changes discussed in Sec#oh.3for the DC circuit.



6.2.4 Problem characteristics
6.2.4.1 Number of variables and equations
e There are the same number of variables as equatiosiid) (

6.2.4.2 Non-existence of direct algorithms

e As with the non-linear circuit in Sectiof.1, because the equations are
non-linear, there is no direct algorithm to solve xdor arbitrary systems.

6.2.4.3 Number of solutions

e There may be no solutions, one solution, or even multipletswis
to (6.14).

e However, power systems are usually designed and operatedtsihe
voltage magnitudes are near to nominal and the voltage siagée
relatively close to 0.

e If we restrict our attention to solutions such that voltagegmitudes are
all close to 1 (and make some other assumptions) then we ahn fin
conditions for the there to be at most one solution.



6.2.4.4 Admittance matrix
Symmetry

e The admittance matrix is symmetric.
Sparsity

e The matrixA is only sparsely populated with non-zero entries and each
component ofj depends on only a few componentsxof



Values

e A typical line impedance has positive real and imaginarygar

e The corresponding line admittan¥g therefore has positive real part and
negative imaginary pairt.

e If there is a line between buséandk then the entries
A = G+ +/—1By in the admittance matrix satisf$y < 0, By > 0.

e The diagonal entried,, = Gy, + +/—1B, in the admittance satisfy
Gy > 0 and, typicallyB,, < 0.

e The resistanc® of transmission lines is relatively small compared to
the inductive reactancey.

e Furthermore, the shunt elements are often also negligdotgared to the
inductive reactance.

e This means that:

Ve, Vke J(0) UL}, |Gul < [Bu-



7
Algorithms for non-linear simultaneous equations

Key issues

e Approximating non-linear functions bylaear approximation,

e using the linear approximation to improve our estimate efdblution,

e convergenceof the sequence of iterates produced by repeated
re-linearization,

e variations that reduce computational effort, and

e sensitivity andlarge change analysis.



7.1 Newton—Raphson method

e Consider a functiog : R" — R" and suppose that we want to solve the
simultaneous non-linear equations:

9(x) =0. (7.1)

7.1.1 Initial guess

e Letx9 be the initial guess of a solution t@. (l)
e We seek an updated value of the veotdt = x(9 + A such that:

g(xt) = g(x© + ax(© >> =0. (7.2)



7.1.2 Taylor approximation
7.1.2.1 Scalar function

g1(xY) = g1 (X9 +9), sincex® = xO + A0,

d 0 0
~ (X 0) + g (X +- 4 5B (O,

n
= a®)+ 3 SR,

d
— g (xO ))+631 (x9)ax©) (7.3)

e In (7.3), the symbol &” should be interpreted to mean that the difference
between the expressions to the left and to the right okthe small

compared tcHAx(o) H .



Scalar function, continued
e Define theremainder at the point X9, e: R" — R, by:

VX € R", e(/X)

d d
= X%+ 80 - g1 () — R O)vxa - G ) e

e By Taylor’s theorem with remainder, if g1 is partially differentiable
with continuous partial derivatives then:

im e(ax)
I 0 [|X]]

e As first mentioned in SectioR.6.3.5 the expression to the right of the
in (7.3 is called dfirst-order Taylor approximation .

e For a partially differentiable functiog; with continuous partial
derivatives, the first-order Taylor approximation abwout x(©
approximates the behavior gf in the vicinity ofx = x(9.

e The first-order Taylor approximation represents a planeisitangential
to the graph of the function at the poixif).



Scalar function, continued
For example, suppose thgit: R? — R is defined by:

Vx € R%,g1(X) = (x1)%+ (X2)*+ 2x2 — 3.

Function

Fig. 7.1. Graph of
function repeated from
sroximation Figure2.5and its Taylor
approximation  about

S X1 (0 [ %] |




7.1.2.2 Vector function

e \We now consider the vector functignn R" — R".
e Sinceg is a vector function angis a vector, the Taylor approximation of

g involves then x n matrix of partial derivativegyg evaluated ax(©.

e A first-order Taylor approximation aj aboutx?) yields:

g(x 9 + A0 ~ g(xO) +§3< (0))p¢(0),

e Where by thex we mean that the norm of the difference between the
expressions to the left and the rightsefis small compared t#Ax(O) H



Vector function, continued
e Define the remainder at the poxif),e: R" — R", by:

VX € R", e(/X)

0 0
— g(x9 + ax) — g(x@) - 531( xO)Aaxg — - — 99 (O,

e By Taylor’s theorem with remainder, if g is partially differentiable with
continuous partial derivatives then:

[[e()|
Ix—0 ||| =0

e The first-order Taylor approximation again represents arig! that is
tangential to the graph of the function; however, the situneis much
more difficult to visualize for a vector function.



7.1.2.3 Jacobian
e Recall from Sectior2.5.3.2that the matrix of partial derivatives is called
the Jacobianand we will denote it byl (e).
e Using this notation, we have:
g(xV) = g(x@ + A9, by definition of A9,
~ g(x9) +I(xO)AO). (7.4)
¢ In some of our development, we will approximate the Jacolben we

evaluate the right-hand side af.§)
e In this case, the linear approximating function is no longegential tof .



7.1.3 Initial update

e Setting the right-hand side of () to zero to solve forx(? yields a set of

linear simultaneous equations:

7.1.4 General update

I = —g(x™),
KD ) V)

e (7.60—(7.7) are called thé&Newton—Raphson update
e XV is theNewton—Raphson step direction

(7.5)

(7.6)
(7.7)



7.1.5 Discussion
e Three drawbacks of the Newton—Raphson method:

(i) The need to calculate the matrix of partial derivativaed aolve a
system of linear simultaneous equations at each iteraoan with
sparse matrix techniques, this can require consideratuld.ef

(i) At some iteration we may find that the linear equati@roj does not
have a solution, so that the update is not well-defined.

(i) Even if (7.6) does have a solution at every iteration, the sequence of
iterates generated may not converge to the solutioid.aJ.(



7.2 Variations on the Newton—Raphson method

e We will discuss various ways to reduce the effort involvethia basic
Newton—Raphson method.

7.2.1 Approximation of the Jacobian

e Replacel(xY)) by a matrixJ\) such that, compared to usidgx"))
directly:

(i) LU factorization ofJ"Y) requires less effort (or has already been
performed),

(i) an inverse ofiV) is easier to calculate, or
(iii) evaluation ofJ"¥) is more convenient.

e If the resulting approximation to the Newton—Raphson updatisfies

suitable conditions, then it turns out that we will stillrdge towards the
solution.



7.2.1.1 The chord method

IO = —g(x¥),
KD ) V)

7.2.1.2 The Shamanskii method

IR AV = —g(xV),
KD ) A

7.2.1.3 Approximating particular terms

e Replace small terms in the Jacobian by zero.

7.2.1.4 Analytic approximation to Jacobian

e \We may have aapproximateanalytical model.

e Then we can combine a humerical evaluatiomg @fith an approximate

analytical model of) to use in the Newton—Raphson update.



7.2.1.5 Finite difference approximation to Jacobian
e Theforward difference approximation between the poimt”) and the
pointx“) 4 Ax:
IV x e g(xY) + %) — g(xY));

e Thecentral difference approximation between the pointY) — Ax and
the pointx(V) + Ax:
2J(xV)) ¢ ~ g(xV) + ) — g(xV) — X);

or
e Thesecant approximation for x € R, between the point") and the
pointxV—L:;
g(xV)) —g(xV~Y)
T xv) _x(v-1)




Finite difference approximation to Jacobian, continued

g(%) Fig. 7.2. Finite difference ap-
proximations to the derivative
‘ ‘ ‘ ‘ ‘ ‘ of a functiong: R — R at a
pointx™). The functiong is il-
lustrated as a solid curve. The
. x(V) 15] . .
point g(x¥) =11 ] IS In-
dicated by thes. The forward
difference approximation with
Mx =1 is given by the slope
of the dotted line. The central
difference approximation with
M =1 is given by the slope
of the dashed line. The secant

1.2}

0.8

0.6

0.4

0.2

o4y X | approximation foxV—Y =0is
-0 . o5 - s . 25 . given by the slope of the dash-
VD xV o xV) xV) +x  dotted line.



7.2.1.6 Quasi-Newton methods
e Consider a first-order Taylor approximationg#éboutxV—Y:

g(X(V—l) + V) & g(X(V—l)) _|_J(X(V_1))AX(V_1)_

e Substituting from the Newton—Raphson update equatiom(7.7)
applied to calculat&“), we obtain:

g(x*)) & gV V) + () (V) X ),
e Re-arranging, we have:
IR V) m g —gx™ ). (7.12)



Quasi-Newton methods, continued
e Quasi-Newton methodsnvolve successively updating each
approximationJV—1 so that the updated approximatid®) used for
calculatingxV*t1) satisfies thejuasi-Newton condition:

v > 0,JV (xV) — xV 1) = g(xV)) — g(xV ). (7.13)
e Quasi-Newton methods generalize the secant approximitifumctions
g:R"— R" )
e The approximatiod"), (which is used in the calculation &f'*1) is

chosen to mimic the behavior of the changegithat resulted from the
choice ofx(V) in the previous iteration.

e Under mild conditions, ifiV=1 is symmetric thersymmetric rank two
updatescan be found that satisfy the Quasi-Newton condition.



7.2.2 lterative algorithms

e If the Jacobian is large and non-sparse, then the factameatr
inversion-based techniques that we have discussed so janohae
effective.

e |terative algorithms may be used.

7.2.3 Pre-conditioning

e Pre-conditioning can be used to help with the solution ofupeate
equation if an approximate inverse to the Jacobian is known.

e A simple “pre-conditioner” is the diagonal matrix consigfiof the
inverse of the diagonal elements of the Jacobian.

e Pre-conditioning is often used in combination with iteratmethods.

7.2.4 Automatic differentiation

e If the calculation ofg is performed by code that implements a direct
algorithm, it is possible to systematically transform tloee for
calculatingg into code that calculates the Jacobian.



7.3 Local convergence of iterative methods
7.3.1 Closeness to a solution

e In this section, we discuss three measures of closenes®totms that
are candidates for use as a stopping criterion.

e We then discuss using the iteration count and the combimafiseveral
stopping criteria.

7.3.1.1 Function value

«Q
—~
2N
=
~—
I

£g, (7.14)
oo < o] 79



7.3.1.2 lteration space

o

o

IA

> 8X) (716)

< & :
2 2

7.3.1.3 Change in iterate

*

0 _y

o

< &x. (7.17)

7.3.1.4 Iteration count
e It is common to limit the total number of iterations.

7.3.1.5 Combined stopping criteria
e Combinations of criteria are used in practice to balancelésire to:

— get close to a solution, but
— not perform an excessive number of iterations.



7.3.2 The Cauchy criterion and contraction mappings
7.3.2.1 Cauchy sequences

Definition 7.1 A sequence{x(")}ffzo is said to be &auchy sequencer
Cauchyif:
Vee R, ,IN € Z, such thafv,v' € Z, andv,v' > N) = (H

<e).

O
e The weaker condition:

vecR, ,IN€Z, such thafveZ, andv>N)= (H (v+1) _ x(v)

<e),
7.18§

e is insufficient to guarantee that the sequefxt® }_ is Cauchy.

Lemma 7.1 A sequencéx(")}(ﬁzo of real vectors converges to a limit iR"
if and only if it is Cauchyd



7.3.2.2 Lipschitz continuity

Definition 7.2 A function® : R" — R™ (or @ : R" — R™"M) is Lipschitz
continuous

e OnaseS CR",
e with respect to a norrje|| on the domairR",
e with respect to a norme|| on the rang&®™ (or to a norm orR™"), and

e with constantL > O, if:
vx,X €S, [|®(x) — d(X)|| < L|x—X||. (7.19)

O

Fig. 7.3. Points x,x, and
X" in a setS C R? (left
, panel) and their images
o X cD(X/)..CD(X ) CD(X),CD(X/), and CD(X”)

(right panel) under a Lip-
schitz continuous function
®:R? - R2

X2 cDZ
e X

X1 @,




7.3.2.3 Contraction mapping

Definition 7.3 A map® : R" — R"is called acontraction mapping or a

contraction map:

e OnaseS CR" and
e with respect to a norrje|| onRR",

if 30 <L < 1 such that:
vx,X €S, [|®(x) — d(X)|| < L|[x—x]|.

]
e A map fromR" to R" is a contraction map of C R"if it is:

— Lipschitz continuous of for one particular norm applied to both its

domain and range, and
— the Lipschitz constant is less than one.
e The mapd illustrated in Figurer.3is a contraction mapping with respect

to the Euclidean norm.



7.3.2.4 General iterative methods and fixed points
e Consider a general iterative method:

W e Zy, xVHD = p(xV), (7.20)
e whered : R" — R" represents the calculations during a single iteration.



General iterative methods and fixed points, continued

Definition 7.4 A point x* is called &fixed point of a map® : R" — R" if

X =®(x). O
X2
S ® X
o X*
X" e

o X

o O(X")
o d(X)

D(X') e@ D(X*) = X*

Fig. 7.4. Pointx, X, X",
and x* in R? (left
panel) and their images
d(x),P(X),P(x"), and
®(x*) (right panel)
under a  function
® : R? — R2. The point
X* is a fixed point of®
becauseb(x*) = x*.



7.3.2.5 Contraction mapping theorem

Theorem 7.2 Suppose thab : R" — R" is a contraction mapping with
Lipschitz constan® < L < 1 with respect to some norif»|| on a closed
setS C R". Also suppose thatx € S, P(x) € S. Then, there exists a

unique % € S that is a fixed point ofb. Moreover, for any %) € S, the
sequence of iterates generated by the iterative meth@f)(converges
to x* and satisfies the bound:

W e Zy, ‘ xV) — x* x(0) — x*

< (L)’

(7.21)

Proof The long proof is divided into four parts:

(i) proving that{x<")}f,°:0 is Cauchy and has a limit that is contained
inS;
(if) proving that the limit is a fixed point of;
(iif) proving that the fixed point is unique; and
(iv) proving that the sequence converges to the fixed poicdraing
to (7.21).
[



7.3.3 The chord and Newton—Raphson methods
7.3.3.1 The chord method

Theorem 7.3 Consider a function gR" — R". Let||e|| be a norm orR"
and let||e|| also stand for the corresponding induced matrix norm,
Suppose that there existlac, andp € R such that:

(i) g is partially differentiable with continuous partial deatives at
x(9), with Jacobian Jx()) satisfying:

[peon™| < a

|36 9| < b

(i) gis partially differentiable in a closed ball of radigsabout X9,
with Jacobian J that is Lipschitz continuous with Lipschitz
constant c. That is,

X € {xeR"||x=xO| <}, 960 36| < efx—x].

(i) abc< 3, and



(iv) p— < pwherep_ = 1=vi-2abc
Then:

(i) In the open ball of radiup , = min{ﬁ, (1+ 1— 2abc) /(ac)}
about X9 there is a unique solution®of g(x) = 0. (There may
be other solutions outside this ball.)

(i) Consider the chord updat& @)—(7.9) with X9 as initial guess.
The sequence of iterates converges'tand each iterate ¥ is
contained in the closed ball of radiygs. about X% Furthermore,

xV) —x*|| < (acp_)"p-. (7.22)

VveZ+,‘




The chord method, continued

Fig. 7.5. lllustration of
chord and Kantorovich
theorems.




The chord method, continued

Fig. 7.6. lllustration of
the linear rate of conver-
gence in chord theorem.




Proof

e We defined : R" — R" to be the map that represents the update in the
chord method.

vx e R", d(x) = x— [J(X?)] “g(x).
e The proof is divided into four parts:

(i) proving that the iterates stay fi= {x eR" Hx—x(o) H <p_ }

(i) proving that® is a contraction map with Lipschitz constant
L =acp_ < 1 so that, by the contraction mapping Theoréi?
there exists a unigue’ € S that is a fixed point ofp,

(ii) proving that the fixed poink* of ® satisfies 7.1) and (.22,
and

(iv) proving thatx* is the only solution within a distange, of x(©.

O
e The rate of convergence is linear.



7.3.3.2 Kantorovich theorem

Theorem 7.4 (Kantorovich) Consider a function:dR" — R". Let||e|| be a
norm onR" and let||e|| also stand for the corresponding induced matrix
norm. Suppose that there existdac, andp € R, such that:

(i) g is partially differentiable with continuous partial deatives at
x9), with Jacobian Jx(9)) satisfying:

IA

[peon™| < a
|36 9| < b

(i) gis partially differentiable, with Jacobian J that is Ligstz
continuous with Lipschitz constant c in a closed ball of tesg

about X9, That is,

vx, X € {xe R"

x—xO <5}, 969 - 30¢)]| < ex—x].
(i) abc< 3, and



(iv) p— < pwherep_ = 1=vi-2abc
Then:

(i) In the open ball of radiup., = min{ﬁ, %Ezabc} about x9,

there is only one solutionof g(x) = 0. (There may be other
solutions outside this ball.)

(i) Consider the Newton—Raphson updateésy—(7.7) with X9 as
initial guess. The sequence of iterates converges ama each

iterate X"/ is contained in the closed ball of radips. about X°.
Furthermore,

(Zabc)((z)v)
(2)Vac

wWeZ,, ‘ xV) — x*

(7.23)
]

e The rate of convergence is quadratic.



7.3.3.3 Discussion
e The chord theorem and the Kantorovich theorem are “local.”
e If the Jacobian is non-singular at the initial guess (so #éhat
well-defined),
e if the initial guess satisfies the equations sufficientlyl\is that the
normb of the initial update:

b = |3 "gx)
- o

)

9

Is small), and
e if the Jacobian does not vary too much over the closed ballditisp

aboutx9) (so thatc is small),
e then the chord and the Newton—Raphson updates converge soltition.



7.3.4 Computational effort
e Supposé is the best bound we have on the initial error; that is:

-

<p. (7.24)

e \We want to estimate the number of iteratidthsuch that the error bound
Is reduced by a factay < 1 so that:

-

< &P. (7.25)



7.3.4.1 Chord method
e The computations required for iterations are:

— one evaluation and one factorization of the Jacobian, rimgueffort on
the order of(n)3, and

— one evaluation of) per iteration, one forwards and backwards
substitution per iteration, and one vector addition peatien, requiring
effort on the order oN(n)?.

e The overall effort is on the order ¢h)3+ N(n)? and the average effort
per iteration is on the order ¢h)3/N + (n)>2.
e We must find a bound on the sizeMfthat is necessary to satisfy.9).

HXW) —x|| < (acp_)Np_,

= (acp_)" (%) D,

(acp )" (g—) P,

IA

e sincep < p by definition.



Chord method, continued
e Then (7.25) will be satisfied if(acp_ )N (g—) <&

_|_
: : . : €
e Re-arranging this condition we obtain thacp_)N < ﬁ.

e Taking natural logarithms and re-arranging, we obtain
N > In(ex) +In(py) —In(p-)
- In(acp_)
e noting that Ifacp_) < 0.
e Overall effort is on the order of:
In(ex) +In(ps) —In(p-)
3 X + 2
0+ == e

e Computational effort grows wittn)3 and(n)?|In(gy)|.




7.3.4.2 Newton—Raphson method
e The computations required for iterations are:

— one evaluation and factorization of the Jacobian per itaratequiring
effort on the order oN(n)3, and

— one evaluation of) per iteration and one forwards and backwards
substitution per iteration, requiring effort on the ordéiNgn)?.

e The overall effort is on the order of(n)3.
e Again, we must find a bound on the sizeMthat is necessary to

satisfy (7.25.



Newton—Raphson method, continued

(Zabc)((z)N)
<
—  (2Nac ’

(2abc)(@™)_
- T (@Nagp
(2abg)(@™) _
(@Nacp,
(2abc)(@™)_

acp+
e sincep., < p by definition and2)N > 1.

-




Newton—Raphson method, continued
abc)((z)N)

acp+
e Re-arranging this condition we obtain th@abc)(@") < acp, &,.
e Taking natural logarithms, we obtaii2)N) In(2abc) < In(acp. &).
e Now 2abc< 1 by hypothesis, so [2abc) < 0 and dividing both sides by

In(acp.&x)

e Then (/.25 will be satisfied if(2 < &

the negative number (@abc) yields (2)N >

In(2abc)
e Taking natural logarithms again and re-arranging yields:
I X
— (e220)  In(JIn(acey 64)))  In(| In(2abg))
- In(2) B In(2) '

e Overall effort is:

(n)3|n<| In(acp &x)|) — In(|In(2abg)|)
In(2) '

e For smalley the computational effort grows witm)3In(|In(ey)|).




7.3.4.3 Quasi-Newton methods

e Assuming super-linear convergence we again find that thebruof
iterationsN grows with In|In(ex)|) and consequently the computational
effort grows with(n)?In(|In(gy)|).

e This effort grows much more slowly withthan for the Newton—Raphson
method.

7.3.4.4 Other variations

e Often, the variations that avoid a complete factorizatibevary iteration
will be more attractive than the basic Newton—Raphson naketho
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7.3.4.5 Summary of performance of methods

Newton—Raphson

0

I
0.1

I
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I
0.3
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Average effort per iteration

Fig. 7.7. The qualita-
tive tradeoff between
effort per iteration and
number of iterations.



7.3.4.6 Calculation of Jacobian

e The analysis so far has assumed that the entridgake no more effort to
calculate than the entries of

e It is sometimes more difficult to calculate entriesdhan it is to
calculate entries dj.

¢ In this case, we may choose to use a method that uses lessation
aboutJ but also has a slower rate of convergence, and consequently a
larger required value dfl, because of the savings in the computational
effort per iteration.

7.3.5 Discussion

e The chord method and the Newton—Raphson method have geaht lo
performance.

e The theorems can provide qualitative insights into corsecg.

e However, we also consider cases where the initial guess fofa the
solution.



7.4 Globalization procedures
e \We must safeguard our algorithm from two related issues:

(i) singular Jacobian, and
(i) excessively large steps.



7.4.1 Singular Jacobian
7.4.1.1 Example
Vx e R,g(x) = (x—2)3+1.

Fig. 7.8. A function
with a singular Jacobian
at the pointx¥) = 2.

The first-order Taylor
approximation  about
xV) is shown dashed.
The approximation
implied by the secant
approximation through
_ : , x  x¥) andx-1 is shown
X" xV) x(v-1 as the dot-dashed line.




7.4.1.2 Modified factorization
e If Jis singular at any iterate then the basic Newton—Raphsoatedll
fail.
e An ad hocapproach to this problem is to modify termsJifx) if it is
singular and then solve the resulting update equation.
e For example, fog: R — R, if |J(xV))| < E for some thresholé € R, .,
then we might replacé(x(")) by the secant approximation:

v _ 9 —g(xVY)
x(V) — x(v=-1)

e or replacel(x)) by the valueE.
e Forg:R" — R", during factorization o8, if we encounter a small or zero
pivot, we simply replace the pivot by a small non-zero number



7.4.2 Step-size selection
7.4.2.1 Region of validity of approximation of function

arctar{x)

2

Fig. 7.9. The inverse
tan function (shown
solid) and its first-order
Taylor approximation
about xV) = 5 (shown
dashed.) The point

1k
0.5 C
ok
-0.5F

x(V) 5
Ll !g(x(v)) - 1.3734]
is illustrated with ao,
while the solution to
2 - - . : " +» x the equatiorg(x) =0is
x5 xV) shown with ae.




Region of validity of approximation of function, continued
e Consider the iterateV) shown in Figure?.9.

e For the function showrﬂx(") —X*
e Using step-size equal to 1:

X(\H—l) L yK

X

o)

= 1I5-0] =5.
> ‘x(")—x* :
> Hg(x“’))’.

e If the Newton—Raphson step directitr") is so large that it would take
the next iterate outside the region of validity of the linapproximation,
then we should not move as far&8") suggests.

e Instead, we should consider moving a smaller step in thetire of

N



7.4.2.2 Step-size rules
e Damped Newton method pick a fixed O< a < 1 and modify 7.7) to:

VD ) 4 o).
e Allow the step-size to vary with iteration:
XV = xV) 4 aMaxv) (7.26)
e where 0< a(¥) < 1 is chosen at each iteration so that:
Hg(x(") +aMaxV)y ‘ < Hg(x(")) ‘ (7.27)

e If the Lo norm is chosen inA.27) then it is possible to choose a suitable
al) if:
— g is partially differentiable with continuous partial deatives, and
— the step directio®xV) satisfies:

g(xV)) < 0. (7.28)



7.4.2.3 Armijo step-size rule

e Condition (/.27) does not specify biiow muchthe norm ofg should
decrease to ensure that we obtain a satisfactory improwamére
satisfaction of the equations.

e A variation on {.27) that does specify a “sufficient” decrease requires
that:

Hg(x(") +aWaxV) , (7.29)

< (1-3a) |lgx¥)

e where 0< & < 1 is a positive constant.

e To understand?.29), suppose that (") is small enough so that the linear
Taylor approximation is accurate and also assume that the
Newton—Raphson step direction was used:

g(X(V) +aV Ax<"))
~ g(xV) +Ix"NaaxM | sincea™ is assumed to be
small enough so that the linear Taylor approximation is eatey
= g(x¥) —a™g(xV)), by definition of "),
= (1—aV)g(xV).



Armijo step-size rule, continued
e Therefore, taking norms:

Hg(xm +aMa)

= (1-a)|gx)

e With a step-size ofi("), the best we could expect is for
Hg(xW) +aMAxV)) ‘ to be reduced by a factor 61 — a(V)) compared to

o6

e In practice, we will not achieve this reduction, as allowedih
condition (7.29.

e Condition (7.29 together with a reduction rule for choosing’ is called
the Armijo step-size rule.

e For example, the rule could be to find the largest step-sitleeoform:

a¥ = (27 k>0, (7.30)

e that satisfies{.29).



Armijo step-size rule, continued

Fig. 7.10. lllustration
of back-tracking in
Armijo step-size rule.




7.4.2.4 Example
e Again consider the arctan function axtf = 5.

& =~ g,
—35.7.

Q

e Setd =0.5.
e The dotted lines in Figuré.11bound the set of points of the form

[Xm T O(V(V)AXM ] satisfying:

0<al) <1,
~(1-8a) gx) | < y< (1-8at)||g(x*)




Example, continued

arctargx)

2

15F

1+

051

oF

-0.5+

—1F

- L L L L L L I I I
-35 -30 -25 -20 -15 -10 -5 0 5 10 15

Fig. 7.11. Armijo update ap-
plied to solving equation with
arctan function (shown solid).
The first-order Taylor approxi-

mation aboutx) = 5 i% >shown
V

. X .
dashed. The pom[g(xw))] IS

illustrated by the rightmosb,
while the solution to the equa-
tion g(x) = 0 is shown with
a e. The dotted lines bound
the region of acceptance for the
Armijo rule with d = 0.5. The
leftmost threex do not satisfy
the Armijo rule. The updated
iterate is illustrated by the left-
mosto.



Example, continued

e Using step-sizes of the forn7 (30 results in tentative updated iterates
and corresponding function values of:

xV) + V) ~ —30.7, g(x™) + V) ~ —1.54,
XV 4 (2) T x XV &~ —129,  g(xV) + (2)7t x X)) &~ —1.49,
XV 4 (2)72x XV &~ —3.93  g(x) +(2) 2 x XV~ —1.32
XV 4 (23 xxV ~ 054 gxV+(2) 3 x V)~ 0.49



7.4.2.5 Choice od

e If the parameted is close to one then it may take many reductions &f
to satisfy 7.29.
e O is often chosen to be considerably less than one.

7.4.2.6 Variations

e There are other variations od.29—(7.30 that seek to avoid unnecessary
“back-tracking.”

7.4.2.7 Discussion

e Step-size rules can significantly aid in convergence frormdial guess
that is far from the solution.

7.4.3 Computational effort

e Variations on the Newton—Raphson method that require fmg per
iteration will tend to perform better overall than the exact
Newton—Raphson method.



7.5 Sensitivity and large change analysis
7.5.1 Sensitivity
7.5.1.1 Implicit function theorem

Corollary 7.5 Let g: R" x R® — R" be partially differentiable with
continuous partial derivatives. Consider solutions of éugiations
g(x;x) = 0, wherey is a parameter. Suppose thatsatisfies:

g(x;0) = 0.

We call x= x* the base-case solution amd= 0 the base-case
parameters. Define the (parameterized) Jacobiai®J x RS — R"™" by:

Vx e R",¥x € R%J(X;X) = %(x;x).

Suppose that(X*;0) is non-singular. Then, there is a solution to

g(x;x) = 0 for x in a neighborhood of the base-case values of the
parametersk = 0. The sensitivity of the solutiori o variation of the



parameters, evaluated at the base-cage-= 0, is given by:

ox*
ax

where K: R" x RS — R"*3 s defined by:

0) = —[(x;0)] K (x";0),

Vx € R",vx € R® K(xX) :g—)?(x;x).

O

e If J(x*;0) has already been factorized then the calculation of the
sensitivity requires one forwards and backwards substitdor each
entry ofy.



7.5.1.2 Example
e Suppose thag: R x R — R is defined by:

vx e R,¥X € R,g(x;X) = (x—2—sinx)3+ 1.

e The base-case solutionis= 1.
e \We consider the sensitivity of the solution to the parametevaluated at
X = 0.



Example, continued
e Using Corollary7.5, we have that the sensitivity is given by:

—[30x0)] 7K (x0),
e whereJ : R" x R® — R™MandK : R" x RS — R"*S are defined by:

vx e R"Vx e R%J(XX) = ag(X;X),

ox
— 3(x—2-—sinx)?,
J(x50) = 3,
Vx e R Wx e R K(xX) = g—f(x;x),
— 3(x—2—siny)?(—cosx),
K(x5;0) = =3

e Substituting, the sensitivity is 1.



7.5.2 Large changes

e Use the iterative techniques we have developed, usingtée ouiess the
solution to the base-case.

7.6 Summary

e The Newton—Raphson method and variants,
e Local convergence results,

e Globalization procedures,

e Sensitivity analysis.



38

Solution of the non-linear simultaneous equations case
studies

e Non-linear DC circuit in Sectio8.1, and
e Power flow problem in Sectiod.2



8.1 Analysis of a non-linear direct current circuit
e The circuit satisfieg(x) = 0, whereg : R* — R* was defined ing.6):

- (R%) X1 +ip(X1—%2) — 1

¥x € R*,g(x) =
(%)

Fig. 8.1. The non-
linear DC circuit from
Figure6.3




8.1.1 Jacobian

(Ria) +g—\i/kt’)(X1 X2) v (X1 —X2) 0 0
3—\2()(1 %) qela—x)+(a+a) (-&) 0
: (&) (R+ded) ()
: : (-4) (3)+a@how

e The Jacobian is similar in appearance to the admittancexmaitra linear
circuit, with the same sort of sparsity structure:

— non-zeros on the diagonals, and
— non-zeros on the off-diagonals corresponding to branches.

e For the diodes, we havacremental admittances evaluatedainstead
of admittances.

(8.1)



8.1.2 Initial guess

e In the absence of a better gues8) = 0 may be a reasonable initial guess
for our circuit.

e Better guesses will save on computation time and occasyomalke the
difference between successful and unsuccessful appircatithe
algorithm.

8.1.3 Calculation of iterates

IO = —g(x),
WD — 3O 4 a0



8.1.4 Application of chord and Kantorovich theorems

e Applying the chord and Kantorovich theorems can requiresicerable
effort even for simple problems.

e The theorems will run into difficulty if the entries in the &dian vary
greatly with their argument because this will cause a laedee/for the
Lipschitz constant.

e Large variation of the entries in the Jacobian occurs in thdedmodel
and other models with cut-off/cut-on characteristics veftee slope of the
current versus voltage characteristic varies from near trevery large.

e We can find that:

o<, > 8],

e The chord and Kantorovich convergence theorems we haverniesgsare
local in nature.

e Their conclusions do not help us if we are solving a circuitthe first
time and do not know which diodes will be conducting and whiglhbe
off.



8.1.5 Step-size rules

e A step-size rule can significantly aid in convergence eveawthe
Jacobian varies greatly.

e The Armijo rule will guarantee th#g(xﬂ)) H2 < Hg(x<°)) H2 and improve
convergence.



8.1.6 Stopping criteria

e If the measurement is accurate to, say, 0.1%, then it is Bupas to try
to solve the equations far better than this accuracy.

e If all measurements were accurate to arourdd®= 1023, a suitable
stopping criterion would be:

Hg(x("))Ho0 <1074, and
o1 <0t 1] <30

e \We might require that this condition be satisfied over sd\®recessive
iterates.

e \We can also try to apply the chord and Kantorovich theorentis¢o
current iteratexV) say, re-interpreted as a new initial guess.



8.1.7 Circuit changes
e Now we suppose that the equations pagameterizedy a parameter
X € R,
e That is,g: R* x RS — R*, with the base-case solution corresponding to
X =0.
8.1.7.1 Sensitivity
e Sensitivity of the base-case solution to changes in
o
)
e WhereJ : R* x RS — R¥* andK : R* x RS — R**S are defined by:

(0) = —[3(x";0)] K (x*;0),

) 9
vxe R VX € R%J(xX) = a—f(x;x), KX X) = a—f(x;x)-



8.1.7.2 Large change analysis

e Apply the Newton—Raphson method (or one of the variant)eo t
changed system using an initial guess for the changed syb#ns given
by the base-case solutiah or by an estimate of the change-case solution
using sensitivity analysis.

e For a change in a resistor or diode, we can also update thbidaagsing
a rank one update.



8.2 Analysis of an electric power system

Y12| 2
3 Y23 ' .
Fig. 8.2. Per-phase
Y, equivalent circuit
model repeated from

Figure6.10,



8.2.1 Jacobian
8.2.1.1 Terms
e The entries irg: R" — R" are either of the fornp, : R" — R:

XERYN p(X) = S U[Gucog6 — Bk) + Bucsin(8; — 6k)] — P,
keJ(£)u{l}

e or of the formq, : R" — R:

VXeRMNQ(¥) = 5y uk[Gucsin(6, — k) — Bucog(B; — Bi)] — Q.
ke (TTU{0}

e The entries in the vectorare either of the fornd®y or of the formuy.



Terms, continued

e Four qualitative types of partial derivative terms cor@sging to each
combination:

VX € R”,ggg( X)

> Ulj[—Gyjsin(6, — 8;) + Byjcos(6, — 6j)], if k=¢,
j€I(0)
Ueuk Gk sin(8, — Bx) — Baccog 6, — k)], if ke J(¢),
0, otherwise,

VX € R”,gfg( X)

2u,Gyp + Z Uj [ng cog 0, — Gj) + By sin(6, — ej)], if k=1/,
j€J(4)
Uy [Gcog 6, — 6k) + Bisin(8, — 8y)], if ke J(¥),
0, otherwise,



Terms, continued

d
vx € R", agﬁ( X)
z usu;j[Grjcog B, —6j) +Byjsin(6,—0j)], if k=2,
_ ) 1€l
o Uguk[—ngCOS(GE — ek) ngSIn(eg — ek)] if ke J(f),
0, otherwise,
n 00y
vxeR ’auk( X)
—2u/Byy + z Uj [ng Sin(eg — Bj) — ng COieg — )] if k=/,
_ jed(f)
o Ug[ngSin(eg — ek) ngCOieg — ek)] if ke J(f),
0, otherwise.



8.2.1.2 Partitioning by types of terms

e Order the entries ig so that all the equations for real power appear first
in a sub-vectop followed by all the equations for reactive power in a
sub-vectom.

e Partitionx so that all the voltage angles appear first in a sub-vexttor
followed by all the voltage magnitudes in a sub-veator



Partitioning by types of terms, continued
e \We can patrtition the Jacobian into four blocks:

vxe R"J(x) = [\32283 :]]23881, (8.2)
X ER" Jpa(X) = F(x),

X ERM JpuX) = P(x),

X ER" Jp(X) = ad(x),

XERN Jqu(x) = o0

8.2.1.3 Sparsity

e Each of the four blocks in8(3) has the same sparsity structure as the bus
admittance matrix.



8.2.1.4 Symmetry

e The blocks]pg, Jpu; Jgp, andJqy are not symmetric andpy" # Jop-
e That is, the Jacobian as a whole is not symmetric.

8.2.1.5 Partitioning by bus number

e An alternative to partitioning by the types of terms is totpp@mn the
Jacobian into blocks based on the bus number.

e As discussed in Sectidn5.4.2 we can treat each22 block as a single
“entry” in our sparse matrix.

e We can use block pivoting as discussed in Seci&i.2

e \We can treat each22 block as a single entity in factorization by
explicitly inverting the block using the formula for the ense of a Z 2
matrix.

e We will not use this approach for solving the power flow proble

¢ In some extensions of this problem block pivoting can be @gdl to
speed up calculations considerably.



8.2.2 Initial guess

e A sensible choice for the initial guess for the voltage magte is

u® = 1, wherel is the vector of all ones.
e A possible guess for the voltage angl®i® = 0.

e These choices of initial guess for voltage angle and madeitue called

a “flat start.”

8.2.3 Calculation of iterates

20 2] o] - - [%y].
v+l — gV 4 pgV)

JHD = ™) A,

(8.3)

(8.4)
(8.5)



8.2.4 Approximation of the Jacobian and update
8.2.4.1 Chord and Shamanskii updates
(0)
e Using a flat startx(?) = [3(0)] = [1] , as our initial guess, the entries for

the Jacobian become:

( Z Byj, ifk=1¢,
opy (x0) = { i€
Ok —Bw, ifkelJ(¥),
\ 0, otherwise,
( 2Gyy+ Z ng, if k=/,
@(X(O)) = j€I(0)
OU G, IfkelJ(),
\ 0, otherwise,



Chord and Shamanskii updates, continued

( z Gyj, ifk=1,
9% 0y — ) €T
00k —Gy, Ifke J(ﬁ),
\ 0, otherwise,
( 2By — z Byj, ifk=2¢,
oqy (xO) — jele)
dU —Bw, ifkel(¥),
\ 0, otherwise.

8.2.4.2 Approximating particular terms
e We will first approximate the Jacobian by:

(1) neglecting all the terms in the blocKs, andJqe, and
(i) approximating some of the terms in the blocks andJqy.

e Neglecting terms in the blocks increases the sparsity oétjuations.
e Approximations to the terms idy,g andJq, then yield a linear system that
Is similar to the Jacobian used in the chord update with atéat. s



Neglecting terms
e As noted in Sectio®.2.4.4 typically:

|ng| < |ng|. (8.6)
e Atypical limit on angle differences i, — 6| < 7.
|sin(8, — Bk)| ~ |6, — 6|, for small angle differences in radians,
< 1, for small angle differences, (8.7)
cog0,—6¢) =~ 1, for small angle differences, (8.8)
u ~ 1L (8.9)



Neglecting terms, continued

0 .
< (X) = upuK[Gusin(B; — Bk) — Bicog By — B )],

00,
Gk(8r — Bk) — Bk,
sinceuw, ~ 1,ux ~ 1,cog0, — 6k) ~ 1,
—Byk, since|8; —Bx| < 1 and|Gy| < |By/, (8.10)

= |u[Gucog8; —Bx) + Bysin(8, — 6x)] |,

|Gk + Bek(8r — 6k)|
sinceuw; ~ 1,co906; —6y) ~ 1,sin(6, — Bk) ~ (6, — B),
< B/, since|8; —Bx| < 1 and|G| < |By, (8.11)

Q

Q

Q



Neglecting terms, continued

dqy
‘aek ()

= |upu[ -G cos(8; — Bk) — By sin(6, — Bx)] |,

| =Gk — Bek(87 — 6|,

sinceuy ~ 1,ux ~ 1,co96; — Bk) ~ 1,sin(6, — Bx) ~ 6, — By),
< |Bul, since|6; — Bx| < 1 and|G| < [Bu|, (8.12)

0 .

YU (%) = Uy [Gpesin(By — Bx) — Buccos B, — By)].

Gk(87 — k) — B,

sinceu; ~ 1,c088, — 6) ~ 1,sin(8, — By) ~ (8, — 6y),

~ —By, since|8, —6x| < 1 and|Gy| < |B|- (8.13)

Q

Q

e These approximations reflect the qualitative observatiahrieal power
flow is mostly determined by differences in voltage anglesszlines,
while reactive power flow is mostly determined by voltage nmiagle
differences



Neglecting terms

e If we neglect all the terms id,, andJge, then we can then approximate

the Jacobian by(x) ~ [‘]p%( x) 0

Jau(X) |-

Jo(x) 0 ][20V]

0 Jqu(X)| | AUV
e(v—l—l)
u(v—|—1) _

P(
q(x
+

e These are called thEcoupIedNeWton—Raphson update equations:

Jpe(x)28")
Jqu(x)2uv)

o p(X(V))a
= —q(xV)).

(v)
X V)gl (8.14)
AB("
ALY
(8.15)
(8.16)



Approximating terms

e In addition to assuming théG| < |B| and that co8, — 6x) ~ 1, we
will assume that:

(i) for any bust, the magnitude of the voltages at buseg € J(¢) is
approximately the same as the magnitude of the voltage/, and

(i) Bee = — Y jer(o) Bej-

0 .
ng(x) — Z uguj[—Gyjsin(, — 8;) +Byjcog6, — 6j)],
¢ jETe)
~ Y (u)?[~Gyjsin(6, — 8;) + Byjcog B, — 6;)],
jel ()

assumingy;j ~ uy for j € J(¢),
Y (W)?Byj, since|Gu| < [Bu| and cog, — 6x) ~ 1,
jel(?)
—(u)®Bys, sinceByy ~ — ¥ jey(r) Brj-

Q

Q



Approximating terms, continued

0 .
r%(x) = —2uBy+ 3 uj[Gyjsin(6, —8;) — Byjcog6, - 6j)],
e €T
~ —2uBy+ Z Ug[ngSin(eg—ej) —ng COieg—ej)],
J1€I(0)

assumingy; ~ u, for j € J(¢),
—2u,Byy — Z u/Byj, since|Gy| < |Bu| and co$b, —6y) ~ 1,
J€I(0)
—uyByy, assuming3,y ~ — > i) Byj,

Q

Q

30, (X) ~ —uy By,

&(X) ~ —U By.



Approximating terms, continued

B =0

= —U Bk Uk,
S = o

= —UrBg

e In summary, the approximatior%j—lf(x) ~ —Uy By ux and

oqy

a—uk(x) ~ —Uy By apply for allZ andk.



Compact representation

e Define the matrixB to be the imaginary part of the bus admittance matrix
A.

e DefineU to be the diagonal matrix having diagonal entries equaléo th
corresponding entries of

Je(X) ~ —UBU,
Ju(X) ~ —UB.

At iterationv, the decoupled equation8.14) can therefore be
approximated by:

Q &

<

—uVpuMpgv) — —p(X(V)), (8.17)
—UVBA™) = —q(xV). (8.18)



Pre-conditioning and scaling variables
e By movingu®¥) to the right-hand sides 08(17) and .18 and defining
NpV) = u¥)ABV) | we obtain the equivalent system:
—BagY) = —[UM] p(xY), (8.19)
BV = UM g, (8.20)

e The coefficient matriX—B) on the left-hand sides of botB.1L9
and @.20 is constant and symmetric.

e To solve 8.19 and 8.20, we need only perforraU factorization of
(—B) once, not once per iteration.

e Once/pY) is known,A"v) can be calculated using:

NV — S (V)] MoV, (8.21)



Discussion

e The advantage of using a constant coefficient matri8itt9 and @.20
Is that it significantly reduces the computational effont peration.

e The approximations we have described are not always verg.goo

e But found to work in practice to decrease computationalretieerall.



8.2.4.3 Quasi-Newton methods

e Quasi-Newton methods can also be applied to solve the emgati
e Equations §.19 and 8.20 specify a suitable initialization for the
approximation to the Jacobian.

8.2.4.4 lterative methods

e Instead of directly solving the linear equations for the l@wRaphson
update, it is also possible to use an iterative algorithroh s the
conjugate gradient method.



8.2.5 Step-size rules
e A step-size rule can aid in convergence.

8.2.6 Stopping criteria
e Require a sufficiently small value of the norm of the:

— change between successive iterates, and
— deviation of the entries af from zero.



8.2.7 Circuit changes
8.2.7.1 Sensitivity

g_)’f(o) — —[J(x0)] K (x~;0),

vx e R",¥Vx € R%J(X;X) = %(X;X),

vxe RV € R%K(XX) = g—f(x;x)-

8.2.7.2 Large change analysis

e Large changes to the real and reactive injections into teegycan be
analyzed by restarting the Newton—Raphson updates bagsée on
solution to the base-case system.

e If the fast decoupled update equations are used, no chargjas@ssary
to the Jacobian.

e Changes to the transmission lines require an update to tlobida even
if the approximate Jacobian is used.
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