Problems for Chapter 21 of Advanced Mathematics for Applications

LINEAR OPERATORS IN INFINITE-DIMENSIONAL SPACES

by Andrea Prosperetti

Notation: In the statement of the following problems the word "operator" is to be taken to mean "linear operator" unless explicitly stated. The following notation is used in the problems that follow:

• $L^p(a,b)$ with a and b finite or infinite, denotes the space of functions u(x) over the interval (a,b) such that

$$||u||^p = \int_a^b |u|^p \, \mathrm{d}x < \infty.$$

In particular, L^2 denotes the space of square integrable functions.

- $C^k[a,b]$ is the set of functions continuous with their first k derivatives on the closed interval $a \le x \le b$. These spaces are normed with the sup norm.
- ℓ^p denotes the space of real or complex sequences of numbers $c = \{c_n\} = (c_0, c_1, c_2, \ldots)$ such that

$$||c||^p = \sum_{n=0}^{\infty} |c_n|^p < \infty.$$

see Boccara example 1 p 273

1 General

- 1. Let S, S_1 and S_2 be linear vector spaces over the same scalar field, and let A_1 be a linear operator from S to S_1 and A_2 a linear operator from S_1 to S_2 . Show that the composition A_2A_1 from S to S_2 is a linear operator.
- 2. Define an operator A transforming functions u(x) belonging $L^2(-a,a)$ with $0 < a < \infty$ into functions $v(x) \in L^2(-a,a)$ according to the rule

$$v(x) = Au(x) = \frac{1}{2} [u(x) + u(-x)].$$

Find the domain and range of A.

- 3. Let A be an operator from a linear vector space S into a linear vector space S'. Given a subspace $S_1 \subset S$, show that AS_1 is a subspace of S'.
- 4. Let A be a linear operator from a space S_1 to a space S_2 . Prove that: (a) If M is a linear manifold of S_1 , its image AM is a linear manifold of S_2 ; (b) If A is invertible and N is a linear manifold of S_2 , then $A^{-1}N$ is a linear manifold of S_1 .
- 5. Let A be an arbitrary operator from a Hilbert space into itself and let a and b be two complex number such that |a| = |b|. Show that $aA + bA^*$ is normal.

- 6. Let A be an operator from a linear vector space S into a linear vector space S'. Let $S_1 \subset S$ be a subspace of S such that $S_1 \cap \mathcal{N}(A) = \emptyset$. Show that A operating only on elements of S_1 is an injective operator. Show also that the spaces S_1 and $||sfAS_1||$ are isomorphic.
- 7. Let A be an operator from a Banach space S into itself with the property that $\sum_{n=0}^{\infty} A^n u$ converges for each $u \in S$. Show that I A is injective and that its range coincides with S.
- 8. In the space ℓ^1 define the shift operator A by

$$Ac \equiv A(c_0, c_1, ..., c_n, ...) = (c_1, c_2, ..., c_{n+1}, ...)$$

What is the norm of A so defined? What is its range? Is the range dense in ℓ^1 ?

9. In the space ℓ^1 define an operator A by

$$Ac \equiv A(c_0, c_1, \dots, c_n, \dots) = (0, 1 c_1, 2 c_2, \dots, n c_n, \dots)$$
.

What are the domain and the range of A so defined? Is the operator bonded? Is its domain dense in ℓ^{1} ?

10. In the space C[0,1] define the operator

$$Au(x) = \int_0^x (x - y)u(y) dy \qquad 0 \le x \le 1.$$

Find the norm and range of A. Is its range dense in C[0,1]?

- 11. Let the functions $\{u_n(x)\}\$ be continuous and differentiable for $0 < x < \infty$ and, for every fixed x > 0, let $\{u_n(x)\}\$ $\in \ell^1$. Is the operator $\mathsf{D}\{u_n(x)\}\$ bounded on ℓ^1 ?
- 12. Show that, if A commutes with AA*, then A is normal.

2 Bounded operators

- 1. Prove that any operator from a finite-dimensional normed space into an arbitrary normed space is bounded.
- 2. What is the norm of the operator defined on $L^2(0,\infty)$ by

$$\mathsf{A}u(x) \ = \left\{ \begin{array}{cc} u(x-a) & x \ge a \\ 0 & x < a \end{array} \right.,$$

where a > 0?

- 3. Let A and B be two bounded linear operators on a Banach space. Suppose that A^{-1} exists and that $||A^{-1}B|| < 1$. Show that A B is invertible and find the expression of its inverse in terms of a series.
- 4. Prove that, similarly to a matrix (see p. 493), a bounded operator A can be uniquely decomposed as $A = A_1 + iA_2$.
- 5. Prove that the two operators A_1 and A_2 arising in the canonical decomposition $A = A_1 + iA_2$ of an operator A commute if and only A is normal.
- 6. Let A and B bet two bounded, self-adjoint (in general non-commuting) operators on a Hilbert space. Show that AB + BA and i(AB BA) are self-adjoint bounded operators on the same space.

7. Consider the space of infinite numerical sequences $\{c\}=(c_1,\,c_1,\,c_2,\,\ldots)$ (real or complex) such that the series $|\sum_{n=1}^{\infty}n!c_n|<\infty$ equipped with the norm

$$||c|| = \sum_{n=1}^{\infty} n! |c_n|.$$

Show that the operator from this space into ℓ^1 defined by

$$\mathsf{B}c = \left(\frac{c_1}{1!}, \frac{c_2}{2}!, \frac{c_3}{3!}, \ldots\right)$$

is bounded. Find its norm.

- 8. Given a function f(x) defined in $L^2(0,2\pi)$ with Fourier coefficients $\{f_n\}$, $-\infty < n < \infty$, define the action of an operator A acting on f as generating a function g = Af having Fourier coefficients $\lambda_n f_n$ where $\{\lambda_n\}$ are a given set of complex numbers. What condition on the λ_n will render A bounded?
- 9. Let B_1 and B_2 be two bounded operators from a space S to a space S'. Show that the set of elements $u \in S$ such that $B_1u = B_2u$ is a closed subset of S.
- 10. Let B_n be a sequence of bounded operators from a Hilbert space H to a Hilbert space H'. Show that, if $B_n u$ is a Cauchy sequence for each $u \in H$, then there is a bounded operator B such that $B_n \to B$ strongly.
- 11. By appealing to the Gelfand-Beurling formula (21.2.47) p. 635 prove that, for a bounded normal operator N,

$$\|\mathbf{N}\| = \sup_{\lambda \in \sigma(\mathbf{N})} |\lambda| = r_{\sigma}(\mathbf{N}).$$

where $\sigma(N)$ denotes the spectrum of N and r_{σ} its spectral radius.

- 12. Prove that, if the bounded operator B is Hermitian, then $\|B^2\| = \|B\|^2$.
- 13. Prove that, if B is a bounded operator in a Hilbert space, then

$$\mathcal{N}(\mathsf{B}^*) \,=\, \mathcal{N}(\mathsf{B}\mathsf{B}^*)\,, \qquad \overline{\mathcal{R}(\mathsf{B})} \,=\, \overline{\mathcal{R}(\mathsf{B}\mathsf{B}^*)}\,.$$

14. In the space ℓ^2 find the adjoint of the operator defined by

$$\mathsf{B}\{c_1,\,c_2,\,c_3,\,\ldots\}\,=\,\{c_1,\,\frac{1}{2}c_2,\,\frac{1}{3}c_3,\,\ldots\}\,.$$

15. Consider the space ℓ^2 of square-summable sequences $\mathbf{u} = \{u_j\}$ with

$$\|\mathbf{u}\|^2 = \sum_{j=1}^{\infty} |u_j|^2 < \infty$$

and the operator A acting on ℓ defined by

$$\mathbf{A}\mathbf{u} = \left\{ \frac{1}{1}u_1, \frac{1}{2}u_2, \dots, \frac{1}{n}u_n, \dots \right\}.$$

- (a) Find eigenvalues and eigenvectors of A.
- (b) Show that $\lambda = 0$ belongs to the continuous spectrum by exhibiting a sequence $\{\mathbf{u}_k\}$ such that $\|\mathbf{u}_k\| = 1$, $\|\mathbf{A}\mathbf{u}_k\| \le 1/k$.
- (c) By solving explicitly the equation $A\mathbf{u} = \mathbf{v}$, where $\mathbf{v} \in \ell^2$, find A^{-1} and verify that it is unbounded as was to be expected from the fact that $\lambda = 0$ belongs to the continuous spectrum.

16. Section 21.2.4 describes the Neumann series for the resolvent. Consider the more general problem

$$(L - \epsilon M) u = f$$

where $|\epsilon| \ll 1$, L, M are bounded operators, and u and f are vectors in a Hilbert space. For given ϵ , L, M ad f, calculate u correct to order ϵ using the same general idea. As an application of this procedure, let L and M be the 2×2 matrices

$$\mathsf{L} = \left| \begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right| \qquad \mathsf{M} = \left| \begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right|$$

and $f = |f_1| f_2|^T$. Calculate the exact solution and verify that the approximate solution that you have found has an error of order ϵ^2 .

2.1 Contractions

- 1. Show that every contraction operator is continuous.
- 2. Define on the real line the operator

$$Ax = \frac{1}{2} (x + \sin x) .$$

Show that A is a contraction. Are there fixed points?

- 3. Given a function f(x) defined in $L^2(0, 2\pi)$ with Fourier coefficients $\{f_n\}$, $-\infty < n < \infty$, define the action of an operator A acting on f as generating a function $g = \mathsf{A}f$ having Fourier coefficients $\lambda_n f_n$ where $\{\lambda_n\}$ are a given set of complex numbers. What condition on the λ_n will render A a contraction mapping?
- 4. For s>0 define the family of *Picard operators* defined on elements of $L^2(-\infty,\infty)$ by

$$(\mathsf{A}_s f)(x) = \frac{1}{2} s \int_{-\infty}^{\infty} e^{-s|x-y|} f(y) \, \mathrm{d}y \ .$$

Show that the A_s are contraction mappings of $L^2(-\infty,\infty)$ into itself.

5. For s>0 define the family of *Poisson operators* defined on elements of $L^2(-\infty,\infty)$ by

$$(\mathsf{A}_s f)(x) = \frac{s}{\pi} \int_{-\infty}^{\infty} \frac{f(x+y)}{y^2 + x^2} \, \mathrm{d}y \ .$$

Show that the A_s are contraction mappings of $L^2(-\infty,\infty)$ into itself and have a unique fixed point.

2.2 Projection operators

1. Show that the operator defined in $L^2(-\pi,\pi)$ by

$$Pu(x) = \int_{-\pi}^{\pi} \left(\sum_{k=m}^{n} \frac{e^{ik(x-\xi)}}{2\pi} \right) u(\xi) d\xi$$

is a projection for any pair of integers m, n.

2. Let P be the orthogonal projection on a finite-dimensional subspace M of a Hilbert space H. (a) Is P bounded? What is its norm? (b) Is P compact? (c) What is the adjoint of P? What are its domain and range? (d) Would P be compact if M were infinite-dimensional?

- 3. Let P_1 and P_2 be two projection operators on a Hilbert space. Under what conditions are (a) $P_1 + P_2$, and (b) P_1P_2 projection operators?
- 4. Is the following operator acting on $L^2(-\infty,\infty)$ a projection operator

$$\mathsf{A}u(x) = \left\{ \begin{array}{cc} u(x) & x \ge a \\ 0 & x < a \end{array} \right. ?$$

5. Define an operator A transforming functions u(x) belonging $L^2(-a,a)$ with $0 < a \le \infty$ into functions $v(x) \in L^2(-a,a)$ according to the rule

$$v(x) = Au(x) = \frac{1}{2} [u(x) + u(-x)].$$

Show that A is an orthogonal projection.

- 6. Show that, if A is a Hermitian idempotent operator on a Hilbert space and its nullspace N is nontrivial (i.e., neither the whole space nor the zero vector), then A is a projection operator onto N^{\perp} .
- 7. If $\emptyset \subset S_1 \subset S_2 \subset H$ and P_1 and P_2 are the projectors on S_1 and S_2 , find $\mathsf{P}_1\mathsf{P}_2$ and $\mathsf{P}_2\mathsf{P}_1$.
- 8. Let P_1 and P_2 be two projection operators onto subspaces S_1 and S_2 of a Hilbert space. and suppose that they commute. Show that $I P_1$, $I P_2$, P_1P_2 , $P_1 + P_2 P_1P_2$ and $P_1 + P_2 2P_1P_2$ are all orthogonal projection operators. How are the ranges of these projection operators related to S_1 and S_2 ?
- 9. Let P be the orthogonal projection on a closed manifold M in the Hilbert space H. Find its eigenvalues and their multiplicities. What are the solvability conditions for the equations

$$Pu = f, \qquad Pu - u = f?$$

Interpret your answer in the light of the theorem requiring orthogonality of f to the solutions of the homogeneous adjoint equation. Find the corresponding solutions if the solvability conditions are satisfied.

- 10. Let H_1 and H_2 be closed subspaces of a Hilbert space H, and let P_1 and P_2 be the corresponding orthogonal projectors. Show that $S_1 \subset S_2$ if and only if $\mathsf{P}_2\mathsf{P}_1 = \mathsf{P}_1$, in which case $\mathsf{P}_1\mathsf{P}_2 = \mathsf{P}_1$,
- 11. Let $\{P_n\}$ be a family of orthogonal projectors in a Hilbert space H constituting a resolution of the identity operator so that $\sum_n P_n = I$. Define an operator A by

$$\mathsf{A}u = \left(\sum_{n} \lambda_{n} \mathsf{P}_{n}\right) u$$

for every u in H, where $\{\lambda_n\}$ is abounded family os scalars. Sow that

- If A is unitary, then $|\lambda_n| = 1$ for all n;
- If A is self-adjoint, then all the λ_n are real and the so are the eigenvalues of A;
- If A is positive, then so are all the λ_n .
- 12. Show that an orthogonal projector operator is compact if and only if its range is finite-dimensional.

2.3 Compact operators

1. Let C be a operator defined on the space ℓ^2 by

$$Cu_n = \lambda_n u_n$$

where $u_n \in \ell^2$ and $|\lambda_n| \to 0$. Show that C is compact.

2. In the space ℓ^p (with $p \ge 1$) define the operator C by

$$Cc = \left(\frac{c_1}{1}, \frac{c_2}{2}, \frac{c_3}{3}, \ldots\right).$$

Show that C is compacts.

- 3. Show that the set of all compact operators on a Hilbert space H is a linear subspace of the space of all bounded operators on H closed in the operator norm.
- 4. Show that a linear operator C from a Hilbert space H to a Hilbert space H' is compact if and only if C^*C is compact.
- 5. Show that, if a linear operator C from a Hilbert space H to a Hilbert space H' is compact, also its adjoint C^* is. if and only if $\mathsf{C}^*\mathsf{C}$ is compact.

2.4 Unitary operators

1. Is the following operator acting on $L^2(0,\infty)$

$$\mathsf{A} u(x) \, = \, \left\{ \begin{array}{cc} u(x-a) & x \geq a \\ 0 & x < a \end{array} \right. \, ,$$

where a > 0, unitary?

2. Define an operator A transforming functions u(x) belonging $L^2(-\infty,\infty)$ into functions v(x) in the same space according to the rule

$$v(x) \,=\, \mathsf{A} u(x) \,=\, \left\{ \begin{array}{cc} u(x) & x \geq 0 \\ -u(x) & x < 0 \end{array} \right. \,.$$

Show that A is a unitary operator

- 3. Let B be a bounded operator and let i belong to its resolvent set. Show that B + iI and $(B iI)^{-1}$ commute.
- 4. Let A be a self-adjoint operator mapping a subset of a Hilbert space H into H. Prove that the operator

$$U = (A - iI)(A + iI)^{-1} = (A + iI)^{-1}(A - iI)$$

is unitary; U is called the Cayley transform of A.

5. Show that, if A is a self-adjoint operator on a Hilbert space, then $e^{iA\xi}$ is strongly continuous, i.e.,

6

$$\lim_{\xi \to c} \|e^{i\mathsf{A}\xi} - e^{i\mathsf{A}c}\| = 0.$$

6. Show that if a unitary operator is positive-definite, then it is the identity operator.

2.5 Integral operators

1. Determine the eigenvalues and eigenfunctions of the Fredholm integral operator

$$\mathsf{L}\,u \equiv \int_0^1 (1 - 3xy)\,u(y)\,dy.$$

Find the general solution of the equation

$$u(x) = f(x) + \mu Lu$$

where f(x) is given, when $1/\mu$ is not an eigenvalue, When $1/\mu$ is an eigenvalue, determine the solvability conditions on f and write the solution for the class of functions f that satisfy these conditions.

2. Determine the eigenvalues and eigenvectors of the Fredholm integral operator

$$\mathsf{L}u \equiv \int_{-\pi}^{\pi} \left[\sin\left(x - y\right) + \sin\left(x + y\right) \right] u(y) \, dy,$$

in the range $-\pi < x < \pi$.

3. Determine the eigenvalues and eigenvectors of the Fredholm integral operator

$$\mathsf{L}u \equiv \frac{1}{2} \int_0^1 \exp\left(-|x-y|\right) u(y) \, dy,$$

in the range 0 < x < 1.

4. Determine the eigenvalues and eigenvectors of the Fredholm integral operator

$$\mathsf{L}u \equiv \frac{1}{2} \int_{0}^{1} \exp\left(-|x-y|\right) u(y) \, dy,$$

in the range $-\infty < x < \infty$.

5. Determine the eigenvalues and eigenvectors of the Fredholm integral operator

$$\mathsf{L}u \equiv \frac{1}{2} \int_0^1 \exp\left(-|x-y|\right) u(y) \, dy,$$

in the range -1 < x < 1.

6. Consider the integral equation

$$u(x) = f(x) + \lambda \int_0^\infty \cos(2xy) u(y) dy,$$

where f is a given continuous function.

- (a) Determine the solution. [Hint: Multiply by $\cos(2xz)$ and integrate. Assume that all the interchanges of integrations that you need are legitimate.]
- (b) From the answer to the previous problem you will find critical values of λ for which the solution may break down. Verify directly that these are eigenvalues of the integral operator. [Hint: Proceed as before. You do not need to find the eigenfunctions to answer this question.]
- (c) If you can find the eigenfunctions, so much the better. If you can't, state the conditions on f for a solution to exist when λ has one of the critical values. Is the solution unique in this case?

7. Given the integral equation

$$(\exp b^2) u(x) + \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp[-(x-y)^2] u(y) dy = (\sinh b^2) \cos 2bx$$

where b is a real positive constant, describe an approximate solution method based on a suitable Bubnov-Galerkin method, i.e., choose a suitable set of basis functions and a suitable scalar product. Describe how you would set up the calculation. Solve the equation exactly.

8. Consider an integral operator with kernel K(x,y) in $\mathsf{L}^2(a,b)$. The operator is self-adjoint (i.e., $K(x,y) = \overline{K(y,x)}$) and Hilbert-Schmidt (i.e. $\int_a^b dx \int_a^b dy |K|^2 < \infty$). Let λ_j and $v_j(x)$ be its eigenvalues and eigenfunctions. Show that

$$K(x,y) = \sum_{j} \lambda_{j} v_{j}(x) \overline{v_{j}(y)}$$

(convergence being with respect to the norm in $L^2(a,b) \times L^2(a,b)$), and also that

$$\int_a^b dx \int_a^b dy |K(x,y)|^2 = \sum_j |\lambda_j|^2$$

9. In the space $L^2(-\infty,\infty)$ consider the operator defined by

$$L = \frac{1}{2} [u(x - a) + u(x + a)]$$

for some real constant a. Is it bounded? Is it self-adjoint?

10. In the integral equation

$$u(x) = x^2 + \int_0^1 \sin(axy) \, u(y) \, dy,$$

assume $|a| \ll 1$, replace $\sin(axy)$ by the first two terms of its power series expansion and obtain an approximate solution. This technique, which in effect approximates a non-separable kernel by a separable one, is sometimes useful.

11. Find the value(s) of α for which the integral equation:

$$u(y) = -\alpha^2 \int_0^1 G(x, y) u(x) dx$$

has a solution and calculate this (these) solution(s). Here

$$G(x,y) = -\frac{\sin kx_{<}\sin k(1-x_{>})}{k\sin k}$$

with k a given real number and $x = \max(x, y), x = \min(x, y)$.

12. (a) Consider the integral operator

$$\mathsf{K}v \,=\, \int_0^\pi K(x,y)\,v(y)\,dy\,,$$

where

$$K(x,y) \,=\, \left\{ \begin{array}{ll} x(y-\pi) & 0 \leq x \leq y \\ y(x-\pi) & y \leq x \leq \pi \end{array} \right.$$

acting on $C_0^2[0,\pi]$ functions, i.e., functions vanishing at x=0 and $x=\pi$ and possessing a continuous second derivative. Find the eigenvalues and the normalized eigenfunctions of K satisfying

$$\mathsf{K}v_n = \pi \lambda_n v_n$$
.

(A good way to proceed is to express the kernel in terms of the Heaviside step function and differentiate twice.)

(b) Solve the integral equation

$$u(x) = f(x) + \frac{\mu^2}{\pi} \int_0^{\pi} K(x, y) u(y) dy$$

where $f(0) = f(\pi) = 0$, by expanding u in a series of eigenfunctions of K.

- (c) Solve this equation directly and indicate what you expect the relation between the two solutions to be.
- 13. Consider the operator

$$\mathsf{K}v = \int_0^\pi \sin(x - y) \, v(y) \, dy \,.$$

- (a) Find eigenvalues and normalized eigenfunctions satisfying $Kv = \lambda v$. (b) Is the operator compact?
- (c) Is $\lambda = 0$ an eigenvalue? If so, what is its degeneracy? (d) If $\lambda = 0$ is an eigenvalue, show one of the many possible orthonormal bases in its eigenspace.

3 Unbounded operators

- 1. Let A be a symmetric operator on a scalar product space and B another operator such that AB = 0. Prove that this situation is only possible when the ranges of the two operators are orthogonal.
- 2. Consider the operator $Af \equiv f'$ on the domain

$$\mathcal{D}_{A} = \{ f \in L^{2}(a,b) : f' \in L^{2}(a,b), f(a) = 0 \}.$$

Determine the adjoint A* with its domain of definition. Is A symmetric? Is it self-adjoint?

3. Consider the operator $Af \equiv f'$ on the domain

$$\mathcal{D}_{A} = \{ f \in L^{2}(a,b) : f' \in L^{2}(a,b), f(a) = f(b) \}.$$

Determine the adjoint A* with its domain of definition. Is A symmetric? Is it self-adjoint?

4. Let $(e_0, e_1, e_2, \ldots, e_n, \ldots)$ be an orthonormal basis in the Hilbert space ℓ^2 . Define the annihilation operator by

$$Ae_0 = 0$$
, $Ae_n = \sqrt{n} e_{n-1}$.

Show that the adjoint of this operator, called the *creation operator*, is given, for $n = 0, 1, \ldots$ by

$$\mathsf{A}^* e_n = \sqrt{n+1} \, e_{n+1} \, .$$

5. Determine the formal adjoint L* of the operator L defined by

$$\mathsf{L}\,u \equiv [p(x)u'(x)]' + q(x)u(x),\tag{1}$$

with p(x) > 0, a < x < b, acting on functions such that u(a) = 0, u'(a) = 0. Determine the conditions that the functions belonging to the domain of L^* must satisfy so that

$$(v, \mathsf{L}u) = (\mathsf{L}^*v, u),\tag{2}$$

with a vanishing conjunct.

6. Determine the formal adjoint L* of the operator L defined by

$$Lu \equiv xu''(x) + (2 - x)u'(x) - u(x), \tag{3}$$

with 0 < x < 1. If L operates on functions such that

$$|u(0)| < \infty, \qquad |u'(0)| < \infty, \qquad u(0) = u'(1),$$
 (4)

determine the conditions that the functions belonging to the domain of L* must satisfy so that

$$(v, \mathsf{L}u) = (\mathsf{L}^*v, u),\tag{5}$$

with a vanishing conjunct.

7. Consider the Sturm-Liouville operator

$$\mathsf{L}u \, \equiv \, -\frac{\mathrm{d}}{\mathrm{d}x} \left[p(x) \frac{\mathrm{d}u}{\mathrm{d}x} \right] + q(x)u$$

acting on functions $u \in L^2(a,b)$ which, in a < x < b, satisfy

$$u(b) - \alpha u(a) - \beta \left. \frac{\mathrm{d}u}{\mathrm{d}x} \right|_{x=a} = 0, \qquad \left. \frac{\mathrm{d}u}{\mathrm{d}x} \right|_{x=b} - \gamma u(a) - \delta \left. \frac{\mathrm{d}u}{\mathrm{d}x} \right|_{x=a} = 0.$$

Determine the conditions satisfied by the (generally complex) numbers α , β , γ and δ which make the operator symmetric.

4 Inverses

- 1. Let A and B be two operators possessing inverses, A^{-1} and B^{-1} . Show that $(AB)^{-1} = B^{-1}A^{-1}$.
- 2. Show that the linear transformation defined on $L^2(-\infty,\infty)$ by

$$v(x) = \frac{1}{a} \int_{-\infty}^{x} e^{-a(x-\xi)} u(\xi) \,\mathrm{d}\xi$$

with a a given constant, is one-to-one.

- 3. Show that, when it exists, the inverse A^{-1} of a operator A from a normed space into another normed space is linear.
- 4. Prove that, when it exists, the inverse A^{-1} of an operator is unique.
- 5. Show that, if B is a bounded operator on a Banach space admitting an inverse B^{-1} , then $(\mathsf{B}^{-1})^n = (\mathsf{B}^n)^{-1}$.
- 6. Show that, if B_1 and B_2 are two bounded operators on a Banach space admitting inverses B_1^{-1} and B_2^{-1} , then B_1B_2 also admits an inverse given by $(B_1B_2)^{-1} = B_2^{-1}B_1^{-1}$.
- 7. Show that, if B_1 and B_2 are two bounded operators on a Banach space and (B_1B_2) admits an inverse, then also B_1 and B_2 must have inverses.
- 8. Show that, if A is positive definite, and $\lambda < 0$, then $(A \lambda I)^{-1}$ exists.
- 9. Let A_n and A be positive self-adjoint operators and let $R_{n,\lambda}$ and R_{λ} be their respective resolvents. Show that $R_{n,\lambda} \to R_{\lambda}$ for any non-real λ in the strong sense if and only if $(A_n + I)^{-1} \to (A + I)^{-1}$ in the strong sense.

5 Solvability conditions and the Fredholm alternative

1. Solve the following integral equation for all values of B

$$u(x) = B \int_0^{2\pi} \sin(x+y) u(y) dy + f(x),$$

 $0 < x < 2\pi$. Give explicitly any solvability condition that need be imposed on f.

2. Solve the integral equation

$$u(x) = f(x) + \lambda \int_0^1 x t u(t) dt,$$

where f and λ are given. Does the solution exist for any λ ? Is there a solvability condition? After studying the problem in general, consider in detail the particular case $f = b - x^2$, where b is a given parameter; discuss the possible cases that arise as b and λ are varied.

- 3. Let C be a compact non-normal operator. Show that, if 1 is not an eigenvalue of C, then there is one and only one solution of the equation Cu u = f for all $f \in H$. If, on the other hand, 1 is an eigenvalue, then the equation has a solution if and only if $f \perp \mathcal{N}(C^* I)$.
- 4. Solve the integral equation

$$u(x) - \lambda \int_0^{\pi/2} K(x,\xi)u(\xi) d\xi = 1$$

where

$$K(x,\xi) \,=\, \left\{ \begin{array}{ll} \sin x\,,\cos\xi & \text{for} 0 \leq x \leq \xi \leq \pi/2 \\ \sin\xi\,,\cos x & \text{for} 0 \leq \xi \leq x \leq \pi/2 \end{array} \right. .$$

Are there special values of λ one should pay attention to?

5. Solve the integral equation

$$u(x) - \lambda \int_0^1 e^{-|x-\xi|} u(\xi) d\xi = x.$$

Are there special values of λ one should pay attention to?

6. Find the general solution of the Fredholm integral equation

$$u(x) = f(x) + \lambda \int_0^1 e^x e^t u(t) dt$$

Are there value(s) of λ for which a solution for arbitrary f? does not exist? When λ equals one of these value(s), what is the condition on f for a solution to exist? Interpret in the ligh of the Fredholm alternative theorem.

7. Consider, over the interval 0 < x < 1, the problem

$$-\frac{d}{dx}\left(x\frac{du}{dx}\right) + \frac{N^2}{x}u = \lambda^2 xu - F(x),$$

where N is a given non-zero integer, λ^2 a given real positive number, and F a given function. The boundary conditions are u(0) regular, u(1) = 0. Are there (λ -dependent) restrictions on F for the solution to exist? (Don't worry about whether the range of the differential operator is closed or not – proceed as if it were.) After answering this question, verify your answer by obtaining the explicit solution of the problem by means of the method of variation of parameters.

6 Resolvent and spectrum

1. By proceeding as in Example 21.2.5 p. 633 find the resolvent kernel (see p. 144) of the Fredholm equation

$$u(x) = f(x) + \mu \int_0^1 (x - y) u(y) dy$$
.

Show that it is an analytic function of μ and find its singularities.

2. Let S be Banach space and A, B operators on S. Show that, if $\lambda \in \rho(A) \cap \rho(B)$, then the resolvents of A and B satisfy the so-called second resolvent equation

$$(A - \lambda I)^{-1} - (B - \lambda I)^{-1} = (B - \lambda I)^{-1}(B - A)(A - \lambda I)^{-1}$$

3. Define on $L^2(=\pi,\pi)$ an operator A acting on functions $u(x)=\sum_{n=-\infty}^{\infty}u_ne^{int}$ by

$$\mathsf{A}u(x) = \sum_{n=-\infty}^{\infty} u_{n+1} e^{int} \,.$$

Let $v_n(\lambda)$ be the Fourier coefficient of $R_{\lambda}[u]$, when it exists, and show that

$$v_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{u(y)}{e^{-iy} - \lambda} e^{-iny} \,\mathrm{d}y.$$

Discuss the existence of v_n as a function of λ and determine the spectrum of A.

- 4. Let A be a non-negative self-adjioint operator on a Hilbert space and let $\lambda > 0$. Use the resolvent equation (21.10.1) p, 669 to show that $(A + \lambda I)^{-1}$ is compact if and only if $(A + I)^{-1}$ is compact.
- 5. Consider on the interval $0 < x < \pi$ the operator L acting on the vector $\mathbf{v}(x) = (v_1(x), v_2(x))$ according to

$$\mathbf{L}\mathbf{v} \equiv \left| \begin{array}{cc} \frac{d}{dx} & -1 \\ & & \\ 1 & \frac{d}{dx} \end{array} \right| \left| \begin{array}{c} v_1 \\ v_2 \end{array} \right| = \left\{ \begin{array}{c} \frac{dv_1}{dx} - v_2 \\ \\ \frac{dv_2}{dx} + v_1 \end{array} \right.,$$

with $v_1(0) = v_1(\pi) = 0$. Define the adjoint of this operator and consider the inhomogeneous equation

$$\mathbf{L}\mathbf{v} = \mathbf{f}$$

where $\mathbf{f}^T(x) = |f_1(x)| f_2(x)|$ and obtain explicitly the solvability condition for this problem. Define the scalar product by

$$(\mathbf{w}, \mathbf{v}) = \int_0^{\pi} |w_1^* w_2^*| \left| v_1 \right| dx = \int_0^{\pi} (w_1^* v_1 + w_2^* v_2) dx.$$

6. Consider the space ℓ^2 of square-summable sequences $\mathbf{u} = \{u_i\}$ with

$$\|\mathbf{u}\|^2 = \sum_{j=1}^{\infty} |u_j|^2 < \infty$$

and the operator A acting on ℓ^2 defined by

$$\mathbf{A}\mathbf{u} = \left\{ \left(a + \frac{1}{1} \right) u_1, \left(a + \frac{1}{2} \right) u_2, \dots, \left(a + \frac{1}{n} \right) u_n, \dots \right\}.$$

where a is a real constant. (a) Find eigenvalues and eigenvectors of A.

- (b) Is the equation $(A \lambda I)\mathbf{u} = \mathbf{v}$, where $\mathbf{v} \in \ell^2$, always solvable for any λ and \mathbf{v} ?
- (c) Give the explicit form of $(A \lambda I)^{-1}$. For what value(s) of λ is this operator unbounded? By definition, these value(s) constitute the continuous spectrum of A.
- 7. Show that a number λ belongs to the approximate point spectrum of an operator A (see p. **) if and only if $A \lambda I$ is not bounded below. Furthermore, show that the approximate point spectrum of an operator is a subset of its spectrum.
- 8. Sjow that the spectrum of a unitary operator lies on the unit circle.
- 9. If C is a compact operator, show that, among its eigenvalues λ , there is one, λ_M , such that $|\lambda_M| = \max |\lambda|$. Furthermore $|\lambda_M| = ||C||$ and

$$\|\mathsf{C}\| = \sup_{\|v\|=1} |(v, Cv)|.$$

10. Let C be a compact self-adjoint operator with the spectral decomposition $C = \sum_n \lambda_n P_n$. For $-\infty < \lambda < \infty$ define the spectral family of operators

$$\mathsf{E}_{\lambda} u = \sum_{\lambda_n \leq \lambda} \mathsf{P}_n u$$

for all $u \in H$. Show that E_{λ} is a projector for any λ and that $\mathsf{E}_{\lambda} \leq \mathsf{E}_{\mu}$ if $\lambda \leq \mu$.