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Problems for Chapter 21 of Advanced Mathematics for Applications

Linear Operators in Infinite-Dimensional Spaces

by Andrea Prosperetti

Notation: In the statement of the following problems the word “operator” is to be taken to mean “linear
operator” unless explicitly stated. The following notation is used in the problems that follow:

• Lp(a, b) with a and b finite or infinite, denotes the space of functions u(x) over the interval (a, b) such
that

‖u‖p =

∫ b

a

|u|p dx < ∞ .

In particular, L2 denotes the space of square integrable functions.

• Ck[a, b] is the set of functions continuous with their first k derivatives on the closed interval a ≤ x ≤ b.
These spaces are normed with the sup norm.

• ℓp denotes the space of real or complex sequences of numbers c = {cn} = (c0, c1, c2, , . . .) such that

‖c‖p =

∞
∑

n=0

|cn|p < ∞ .

see Boccara example 1 p 273

1 General

1. Let S, S1 and S2 be linear vector spaces over the same scalar field, and let A1 be a linear operator
from S to S1 and A2 a linear operator from S1 to S2. Show that the composition A2A1 from S to S2

is a linear operator.

2. Define an operator A transforming functions u(x) belonging L2(−a, a) with 0 < a < ∞ into functions
v(x) ∈ L2(−a, a) according to the rule

v(x) = Au(x) =
1

2
[u(x) + u(−x)] .

Find the domain and range of A.

3. Let A be an operator from a linear vector space S into a linear vector space S′. Given a subspace
S1 ⊂ S, show that AS1 is a subspace of S′.

4. Let A be a linear operator from a space S1 to a space S2. Prove that: (a) If M is a linear manifold
of S1, its image AM is a linear manifold of S2; (b) If A is invertible and N is a linear manifold of S2,
then A

−1N is a linear manifold of S1.

5. Let A be an arbitrary operator from a Hilbert space into itself and let a and b be two complex number
such that |a| = |b|. Show that aA + bA∗ is normal.
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6. Let A be an operator from a linear vector space S into a linear vector space S′. Let S1 ⊂ S be a
subspace of S such that S1

⋂N (A) = ∅. Show that A operating only on elements of S1 is an injective
operator. Show also that the spaces S1 and ‖sfAS1 are isomorphic.

7. Let A be an operator from a Banach space S into itself with the property that
∑∞

n=0 A
nu converges

for each u ∈ S. Show that I − A is injective and that its range coincides with S.

8. In the space ℓ1 define the shift operator A by

Ac ≡ A (c0, c1, . . . , cn, . . .) = (c1, c2, . . . , cn+1, . . .) .

What is the norm of A so defined? What is its range? Is the range dense in ℓ1?

9. In the space ℓ1 define an operator A by

Ac ≡ A (c0, c1, . . . , cn, . . .) = (0, 1 c1, 2 c2, . . . , n cn, . . .) .

What are the domain and the range of A so defined? Is the operator bonded? Is its domain dense in
ℓ1?

10. In the space C[0, 1] define the operator

Au(x) =

∫ x

0

(x − y)u(y) dy 0 ≤ x ≤ 1 .

Find the norm and range of A. Is its range dense in C[0, 1]?

11. Let the functions {un(x)} be continuous and differentiable for 0 < x < ∞ and, for every fixed x > 0,
let {un(x)} ∈ ℓ1. Is the operator D{un(x)} = {u′

n(x)} bounded on ℓ1?

12. Show that, if A commutes with AA∗, then A is normal.

2 Bounded operators

1. Prove that any operator from a finite-dimensional normed space into an arbitrary normed space is
bounded.

2. What is the norm of the operator defined on L2(0,∞) by

Au(x) =

{

u(x − a) x ≥ a
0 x < a

,

where a > 0?

3. Let A and B be two bounded linear operators on a Banach space. Suppose that A−1 exists and that
‖A−1B‖ < 1. Show that A − B is invertible and find the expression of its inverse in terms of a series.

4. Prove that, similarly to a matrix (see p. 493), a bounded operator A can be uniquely decomposed as
A = A1 + iA2.

5. Prove that the two operators A1 and A2 arising in the canonical decomposition A = A1 + iA2 of an
operator A commute if and only A is normal.

6. Let A and B bet two bounded, self-adjoint (in general non-commuting) operators on a Hilbert space.
Show that AB + BA and i(AB − BA) are self-adjoint bounded operators on the same space.
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7. Consider the space of infinite numerical sequences {c} = (c1, c1, c2, . . .) (real or complex) such that
the series |∑∞

n=1 n!cn| < ∞ equipped with the norm

‖c‖ =

∞
∑

n=1

n!|cn| .

Show that the operator from this space into ℓ1 defined by

Bc =
(c1

1!
,

c2

2
!,

c3

3!
, . . .

)

is bounded. Find its norm.

8. Given a function f(x) defined in L2(0, 2π) with Fourier coefficients {fn}, −∞ < n < ∞, define the
action of an operator A acting on f as generating a function g = Af having Fourier coefficients λnfn

where {λn} are a given set of complex numbers. What condition on the λn will render A bounded?

9. Let B1 and B2 be two bounded operators from a space S to a space S′. Show that the set of elements
u ∈ S such that B1u = B2u is a closed subset of S.

10. Let Bn be a sequence of bounded operators from a Hilbert space H to a Hilbert space H ′. Show that,
if Bnu is a Cauchy sequence for each u ∈ H , then there is a bounded operator B such that Bn → B

strongly.

11. By appealing to the Gelfand-Beurling formula (21.2.47) p. 635 prove that, for a bounded normal
operator N,

‖N‖ = sup
λ∈σ(N)

|λ| = rσ(N) .

where σ(N) denotes the spectrum of N and rσ its spectral radius.

12. Prove that, if the bounded operator B is Hermitian, then ‖B2‖ = ‖B‖2.

13. Prove that, if B is a bounded operator in a Hilbert space, then

N (B∗) = N (BB
∗) , R(B) = R(BB∗) .

14. In the space ℓ2 find the adjoint of the operator defined by

B{c1, c2, c3, . . .} = {c1,
1

2
c2,

1

3
c3, . . .} .

15. Consider the space ℓ2 of square-summable sequences u = {uj} with

‖u‖2 =
∞
∑

j=1

|uj|2 < ∞

and the operator A acting on ℓ defined by

Au =

{

1

1
u1,

1

2
u2, . . . ,

1

n
un, . . .

}

.

(a) Find eigenvalues and eigenvectors of A.
(b) Show that λ = 0 belongs to the continuous spectrum by exhibiting a sequence {uk} such that
‖uk‖ = 1, ‖Auk‖ ≤ 1/k.
(c) By solving explicitly the equation Au = v, where v ∈ ℓ2, find A

−1 and verify that it is unbounded
as was to be expected from the fact that λ = 0 belongs to the continuous spectrum.
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16. Section 21.2.4 describes the Neumann series for the resolvent. Consider the more general problem

(L − ǫM)u = f

where |ǫ| ≪ 1, L, M are bounded operators, and u and f are vectors in a Hilbert space. For given ǫ, L,
M ad f , calculate u correct to order ǫ using the same general idea. As an application of this procedure,
let L and M be the 2×2 matrices

L =

∣

∣

∣

∣

1 0
0 -1

∣

∣

∣

∣

M =

∣

∣

∣

∣

2 -1
-1 2

∣

∣

∣

∣

and f = |f1 f2|T . Calculate the exact solution and verify that the approximate solution that you
have found has an error of order ǫ2.

2.1 Contractions

1. Show that every contraction operator is continuous.

2. Define on the real line the operator

Ax =
1

2
(x + sin x) .

Show that A is a contraction. Are there fixed points?

3. Given a function f(x) defined in L2(0, 2π) with Fourier coefficients {fn}, −∞ < n < ∞, define the
action of an operator A acting on f as generating a function g = Af having Fourier coefficients λnfn

where {λn} are a given set of complex numbers. What condition on the λn will render A a contraction
mapping?

4. For s > 0 define the family of Picard operators defined on elements of L2(−∞,∞) by

(Asf)(x) =
1

2
s

∫ ∞

−∞

e−s|x−y|f(y) dy .

Show that the As are contraction mappings of L2(−∞,∞) into itself.

5. For s > 0 define the family of Poisson operators defined on elements of L2(−∞,∞) by

(Asf)(x) =
s

π

∫ ∞

−∞

f(x + y)

y2 + x2
dy .

Show that the As are contraction mappings of L2(−∞,∞) into itself and have a unique fixed point.

2.2 Projection operators

1. Show that the operator defined in L2(−π, π) by

Pu(x) =

∫ π

−π

(

n
∑

k=m

eik(x−ξ)

2π

)

u(ξ) dξ

is a projection for any pair of integers m, n.

2. Let P be the orthogonal projection on a finite-dimensional subspace M of a Hilbert space H . (a) Is P

bounded? What is its norm? (b) Is P compact? (c) What is the adjoint of P? What are its domain
and range? (d) Would P be compact if M were infinite-dimensional?
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3. Let P1 and P2 be two projection operators on a Hilbert space. Under what conditions are (a) P1 + P2,
and (b) P1P2 projection operators?

4. Is the following operator acting on L2(−∞,∞) a projection operator

Au(x) =

{

u(x) x ≥ a
0 x < a

?

5. Define an operator A transforming functions u(x) belonging L2(−a, a) with 0 < a ≤ ∞ into functions
v(x) ∈ L2(−a, a) according to the rule

v(x) = Au(x) =
1

2
[u(x) + u(−x)] .

Show that A is an orthogonal projection.

6. Show that, if A is a Hermitian idempotent operator on a Hilbert space and its nullspace N is nontrivial
(i.e., neither the whole space nor the zero vector), then A is a projection operator onto N⊥.

7. If ∅ ⊂ S1 ⊂ S2 ⊂ H and P1 and P2 are the projectors on S1 and S2, find P1P2 and P2P1.

8. Let P1 and P2 be two projection operators onto subspaces S1 and S2 of a Hilbert space. and suppose
that they commute. Show that I − P1, I − P2, P1P2, P1 + P2 − P1P2 and P1 + P2 − 2P1P2 are all
orthogonal projection operators. How are the ranges of these projection operators related to S1 and
S2?

9. Let P be the orthogonal projection on a closed manifold M in the Hilbert space H . Find its eigenvalues
and their multiplicities. What are the solvability conditions for the equations

Pu = f, Pu − u = f?

Interpret your answer in the light of the theorem requiring orthogonality of f to the solutions of
the homogeneous adjoint equation. Find the corresponding solutions if the solvability conditions are
satisfied.

10. Let H1 and H2 be closed subspaces of a Hilbert space H , and let P1 and P2 be the corresponding
orthogonal projectors. Show that S1 ⊂ S2 if and only if P2P1 = P1, in which case P1P2 = P1,

11. Let {Pn} be a family of orthogonal projectors in a Hilbert space H constituting a resolution of the
identity operator so that

∑

n Pn = I. Define an operator A by

Au =

(

∑

n

λnPn

)

u

for every u in H , where {λn} is abounded family os scalars. Sow that

• If A is unitary, then |λn| = 1 for all n;

• If A is self-adjoint, then all the λn are real and the so are the eigenvalues of A;

• If A is positive, then so are all the λn.

12. Show that an orthogonal projector operator is compact if and only if its range is finite-dimensional.
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2.3 Compact operators

1. Let C be a operator defined on the space ℓ2 by

Cun = λnun

where un ∈ ℓ2 and |λn| → 0. Show that C is compact.

2. In the space ℓp (with p ≥ 1) define the operator C by

Cc =
(c1

1
,

c2

2
,

c3

3
, . . .

)

.

Show that C is compacts.

3. Show that the set of all compact operators on a Hilbert space H is a linear subspace of the space of
all bounded operators on H closed in the operator norm.

4. Show that a linear operator C from a Hilbert space H to a Hilbert space H ′ is compact if and only if
C
∗
C is compact.

5. Show that, if a linear operator C from a Hilbert space H to a Hilbert space H ′ is compact, also its
adjoint C∗ is. if and only if C∗C is compact.

2.4 Unitary operators

1. Is the following operator acting on L2(0,∞)

Au(x) =

{

u(x − a) x ≥ a
0 x < a

,

where a > 0, unitary?

2. Define an operator A transforming functions u(x) belonging L2(−∞,∞) into functions v(x) in the
same space according to the rule

v(x) = Au(x) =

{

u(x) x ≥ 0
−u(x) x < 0

.

Show that A is a unitary operator

3. Let B be a bounded operator and let i belong to its resolvent set. Show that B + iI and (B − iI)−1

commute.

4. Let A be a self-adjoint operator mapping a subset of a Hilbert space H into H . Prove that the operator

U = (A − iI)(A + iI)−1 = (A + iI)−1(A − iI)

is unitary; U is called the Cayley transform of A.

5. Show that, if A is a self-adjoint operator on a Hilbert space, then eiAξ is strongly continuous, i.e.,

lim
ξ→c

‖eiAξ − eiAc‖ = 0 .

6. Show that if a unitary operator is positive-definite, then it is the identity operator.
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2.5 Integral operators

1. Determine the eigenvalues and eigenfunctions of the Fredholm integral operator

L u ≡
∫ 1

0

(1 − 3xy)u(y) dy.

Find the general solution of the equation

u(x) = f(x) + µLu,

where f(x) is given, when 1/µ is not an eigenvalue, When 1/µ is an eigenvalue, determine the solvability
conditions on f and write the solution for the class of functions f that satisfy these conditions.

2. Determine the eigenvalues and eigenvectors of the Fredholm integral operator

Lu ≡
∫ π

−π

[sin (x − y) + sin (x + y)] u(y) dy,

in the range −π < x < π.

3. Determine the eigenvalues and eigenvectors of the Fredholm integral operator

Lu ≡ 1

2

∫ 1

0

exp (−|x − y|)u(y) dy,

in the range 0 < x < 1.

4. Determine the eigenvalues and eigenvectors of the Fredholm integral operator

Lu ≡ 1

2

∫ 1

0

exp (−|x − y|)u(y) dy,

in the range −∞ < x < ∞.

5. Determine the eigenvalues and eigenvectors of the Fredholm integral operator

Lu ≡ 1

2

∫ 1

0

exp (−|x − y|)u(y) dy,

in the range −1 < x < 1.

6. Consider the integral equation

u(x) = f(x) + λ

∫ ∞

0

cos(2xy)u(y) dy,

where f is a given continuous function.

(a) Determine the solution. [Hint: Multiply by cos(2xz) and integrate. Assume that all the inter-
changes of integrations that you need are legitimate.]

(b) From the answer to the previous problem you will find critical values of λ for which the solution
may break down. Verify directly that these are eigenvalues of the integral operator. [Hint: Proceed
as before. You do not need to find the eigenfunctions to answer this question.]

(c) If you can find the eigenfunctions, so much the better. If you can’t, state the conditions on f for
a solution to exist when λ has one of the critical values. Is the solution unique in this case?
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7. Given the integral equation

(exp b2) u(x) +
1√
π

∫ ∞

−∞

exp [−(x − y)2] u(y) dy = (sinh b2) cos 2bx ,

where b is a real positive constant, describe an approximate solution method based on a suitable
Bubnov-Galerkin method, i.e., choose a suitable set of basis functions and a suitable scalar product.
Describe how you would set up the calculation. Solve the equation exactly.

8. Consider an integral operator with kernel K(x, y) in L2(a, b). The operator is self-adjoint (i.e., K(x, y)

= K(y, x)) and Hilbert-Schmidt (i.e.
∫ b

a dx
∫ b

a dy|K|2 < ∞). Let λj and vj(x) be its eigenvalues and
eigenfunctions. Show that

K(x, y) =
∑

j

λjvj(x)vj(y)

(convergence being with respect to the norm in L2(a, b) × L2(a, b)), and also that

∫ b

a

dx

∫ b

a

dy|K(x, y)|2 =
∑

j

|λj |2

9. In the space L2(−∞,∞) consider the operator defined by

L =
1

2
[u(x − a) + u(x + a)]

for some real constant a. Is it bounded? Is it self-adjoint?

10. In the integral equation

u(x) = x2 +

∫ 1

0

sin(axy)u(y) dy,

assume |a| ≪ 1, replace sin(axy) by the first two terms of its power series expansion and obtain
an approximate solution. This technique, which in effect approximates a non-separable kernel by a
separable one, is sometimes useful.

11. Find the value(s) of α for which the integral equation:

u(y) = −α2

∫ 1

0

G(x, y)u(x) dx

has a solution and calculate this (these) solution(s). Here

G(x, y) = − sinkx< sin k(1 − x>)

k sin k

with k a given real number and x> = max (x, y), x> = min (x, y).

12. (a) Consider the integral operator

Kv =

∫ π

0

K(x, y) v(y) dy ,

where

K(x, y) =

{

x(y − π) 0 ≤ x ≤ y
y(x − π) y ≤ x ≤ π
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acting on C2
0 [0, π] functions, i.e., functions vanishing at x = 0 and x = π and possessing a continuous

second derivative. Find the eigenvalues and the normalized eigenfunctions of K satisfying

Kvn = πλnvn .

(A good way to proceed is to express the kernel in terms of the Heaviside step function and differentiate
twice.)
(b) Solve the integral equation

u(x) = f(x) +
µ2

π

∫ π

0

K(x, y)u(y) dy

where f(0) = f(π) = 0, by expanding u in a series of eigenfunctions of K.
(c) Solve this equation directly and indicate what you expect the relation between the two solutions
to be.

13. Consider the operator

Kv =

∫ π

0

sin(x − y) v(y) dy .

(a) Find eigenvalues and normalized eigenfunctions satisfying Kv = λv. (b) Is the operator compact?
(c) Is λ = 0 an eigenvalue? If so, what is its degeneracy? (d) If λ = 0 is an eigenvalue, show one of the
many possible orthonormal bases in its eigenspace.

3 Unbounded operators

1. Let A be a symmetric operator on a scalar product space and B another operator such that AB = 0.
Prove that this situation is only possible when the ranges of the two operators are orthogonal.

2. Consider the operator Af ≡ f ′ on the domain

DA = {f ∈ L2(a, b) : f ′ ∈ L2(a, b), f(a) = 0}.

Determine the adjoint A∗ with its domain of definition. Is A symmetric? Is it self-adjoint?

3. Consider the operator Af ≡ f ′ on the domain

DA = {f ∈ L2(a, b) : f ′ ∈ L2(a, b), f(a) = f(b)}.

Determine the adjoint A∗ with its domain of definition. Is A symmetric? Is it self-adjoint?

4. Let (e0, e1, e2 . . . , en, . . .) be an orthonormal basis in the Hilbert space ℓ2. Define the annihilation

operator by
Ae0 = 0 , Aen =

√
n en−1 .

Show that the adjoint of this operator, called the creation operator, is given, for n = 0, 1, . . ., by

A
∗en =

√
n + 1 en+1 .

5. Determine the formal adjoint L∗ of the operator L defined by

L u ≡ [p(x)u′(x)]′ + q(x)u(x), (1)

with p(x) > 0, a < x < b, acting on functions such that u(a) = 0, u′(a) = 0. Determine the conditions
that the functions belonging to the domain of L∗ must satisfy so that

(v, Lu) = (L∗v, u), (2)

with a vanishing conjunct.
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6. Determine the formal adjoint L∗ of the operator L defined by

Lu ≡ xu′′(x) + (2 − x)u′(x) − u(x), (3)

with 0 < x < 1. If L operates on functions such that

|u(0)| < ∞, |u′(0)| < ∞, u(0) = u′(1), (4)

determine the conditions that the functions belonging to the domain of L
∗ must satisfy so that

(v, Lu) = (L∗v, u), (5)

with a vanishing conjunct.

7. Consider the Sturm-Liouville operator

Lu ≡ − d

dx

[

p(x)
du

dx

]

+ q(x)u

acting on functions u ∈ L2(a, b) which, in a < x < b, satisfy

u(b) − αu(a) − β
du

dx

∣

∣

∣

∣

x=a

= 0 ,
du

dx

∣

∣

∣

∣

x=b

− γu(a) − δ
du

dx

∣

∣

∣

∣

x=a

= 0 .

Determine the conditions satisfied by the (generally complex) numbers α, β, γ and δ which make the
operator symmetric.

4 Inverses

1. Let A and B be two operators possessing inverses, A−1 and B−1. Show that (AB)−1 = B−1A−1.

2. Show that the linear transformation defined on L2(−∞,∞) by

v(x) =
1

a

∫ x

−∞

e−a(x−ξ)u(ξ) dξ

with a a given constant, is one-to-one.

3. Show that, when it exists, the inverse A−1 of a operator A from a normed space into another normed
space is linear.

4. Prove that, when it exists, the inverse A−1 of an operator is unique.

5. Show that, if B is a bounded operator on a Banach space admitting an inverse B−1, then (B−1)n =
(Bn)−1.

6. Show that, if B1 and B2 are two bounded operators on a Banach space admitting inverses B
−1
1 and

B
−1
2 , then B1B2 also admits an inverse given by (B1B2)

−1 = B
−1
2 B

−1
1 .

7. Show that, if B1 and B2 are two bounded operators on a Banach space and (B1B2) admits an inverse,
then also B1 and B2 must have inverses.

8. Show that, if A is positive definite, and λ < 0, then (A − λI)−1 exists.

9. Let An and A be positive self-adjoint operators and let Rn,λ and Rλ be their respective resolvents.
Show that Rn,λ → Rλ for any non-real λ in the strong sense if and only if (An + I)−1 → (A + I)−1 in
the strong sense.
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5 Solvability conditions and the Fredholm alternative

1. Solve the following integral equation for all values of B

u(x) = B

∫ 2π

0

sin (x + y)u(y) dy + f(x),

0 < x < 2π. Give explicitly any solvability condition that need be imposed on f .

2. Solve the integral equation

u(x) = f(x) + λ

∫ 1

0

x t u(t) dt ,

where f and λ are given. Does the solution exist for any λ? Is there a solvability condition? After
studying the problem in general, consider in detail the particular case f = b − x2, where b is a given
parameter; discuss the possible cases that arise as b and λ are varied.

3. Let C be a compact non-normal operator. Show that, if 1 is not an eigenvalue of C, then there is
one and only one solution of the equation Cu − u = f for all f ∈ H . If, on the other hand, 1 is an
eigenvalue, then the equation has a solution if and only if f ⊥ N (C∗ − I).

4. Solve the integral equation

u(x) − λ

∫ π/2

0

K(x, ξ)u(ξ) dξ = 1

where

K(x, ξ) =

{

sin x , cos ξ for0 ≤ x ≤ ξ ≤ π/2
sin ξ , cosx for0 ≤ ξ ≤ x ≤ π/2

.

Are there special values of λ one should pay attention to?

5. Solve the integral equation

u(x) − λ

∫ 1

0

e−|x−ξ|u(ξ) dξ = x .

Are there special values of λ one should pay attention to?

6. Find the general solution of the Fredholm integral equation

u(x) = f(x) + λ

∫ 1

0

exetu(t) dt

Are there value(s) of λ for which a solution for arbitrary f? does not exist? When λ equals one of
these value(s), what is the condition on f for a solution to exist? Interpret in the ligh of the Fredholm
alternative thorem.

7. Consider, over the interval 0 < x < 1, the problem

− d

dx

(

x
du

dx

)

+
N2

x
u = λ2xu − F (x) ,

where N is a given non-zero integer, λ2 a given real positive number, and F a given function. The
boundary conditions are u(0) regular, u(1) = 0. Are there (λ-dependent) restrictions on F for the
solution to exist? (Don’t worry about whether the range of the differential operator is closed or not
– proceed as if it were.) After answering this question, verify your answer by obtaining the explicit
solution of the problem by means of the method of variation of parameters.
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6 Resolvent and spectrum

1. By proceeding as in Example 21.2.5 p. 633 find the resolvent kernel (see p. 144) of the Fredholm
equation

u(x) = f(x) + µ

∫ 1

0

(x − y)u(y) dy .

Show that it is an analytic function of µ and find its singularities.

2. Let S be Banach space and A, B operators on S. Show that, if λ ∈ ρ(A)
⋂

ρ(B), then the resolvents of
A and B satisfy the so-called second resolvent equation

(A − λI)−1 − (B − λI)−1 = (B − λI)−1(B − A)(A − λI)−1 .

3. Define on L2(= π, π) an operator A acting on functions u(x) =
∑∞

n=−∞ uneint by

Au(x) =

∞
∑

n=−∞

un+1e
int .

Let vn(λ) be the Fourier coefficient of Rλ[u], when it exists, and show that

vn =
1

2π

∫ π

−π

u(y)

e−iy − λ
e−iny dy .

Discuss the existence of vn as a function of λ and determine the spectrum of A.

4. Let A be a non-negative self-adjioint operator on a Hilbert space and let λ > 0. Use the resolvent
equation (21.10.1) p, 669 to show that (A + λI)−1 is compact if and only if (A + I)−1 is compact.

5. Consider on the interval 0 < x < π the operator L acting on the vector v(x) = (v1(x), v2(x)) according
to

Lv ≡

∣

∣

∣

∣

∣

∣

d
dx −1

1 d
dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v1

v2

∣

∣

∣

∣

∣

∣

=







dv1

dx − v2

dv2

dx + v1

,

with v1(0) = v1(π) = 0. Define the adjoint of this operator and consider the inhomogeneous equation

Lv = f ,

where f
T (x) = |f1(x) f2(x)| and obtain explicitly the solvability condition for this problem. Define

the scalar product by

(w,v) =

∫ π

0

|w∗
1 w2 ∗ |

∣

∣

∣

∣

∣

∣

v1

v2

∣

∣

∣

∣

∣

∣

dx =

∫ π

0

(w∗
1v1 + w∗

2v2) dx.

6. Consider the space ℓ2 of square-summable sequences u = {uj} with

‖u‖2 =

∞
∑

j=1

|uj|2 < ∞

and the operator A acting on ℓ2 defined by

Au =

{(

a +
1

1

)

u1,

(

a +
1

2

)

u2, . . . ,

(

a +
1

n

)

un, . . .

}

.

12



where a is a real constant. (a) Find eigenvalues and eigenvectors of A.
(b) Is the equation (A − λI)u = v, where v ∈ ℓ2, always solvable for any λ and v?
(c) Give the explicit form of (A − λI)−1. For what value(s) of λ is this operator unbounded? By
definition, these value(s) constitute the continuous spectrum of A.

7. Show that a number λ belongs to the approximate point spectrum of an operator A (see p. **) if and
only if A − λI is not bounded below. Furthermore, show that the approximate point spectrum of an
operator is a subset of its spectrum.

8. Sjow that the spectrum of a unitary operator lies on the unit circle.

9. If C is a compact operator, show that, among its eigenvalues λ, there is one, λM , such that |λM | =
max |λ|. Furthermore |λM | = ‖C‖ and

‖C‖ = sup
‖v‖=1

|(v, Cv)| .

10. Let C be a compact self-adjoint operator with the spectral decomposition C =
∑

n λnPn. For −∞ <
λ < ∞ define the spectral family of operators

Eλu =
∑

λn≤λ

Pnu

for all u ∈ H . Show that Eλ is a projector for any λ and that Eλ ≤ Eµ if λ ≤ µ.
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