
Digital Logic Design: a rigorous approach c©
Chapter 9: Representation of Boolean Functions by Formulas

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 10, 2012

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

http://www.eng.tau.ac.il/~guy/Even-Medina

Sum of Products

The first normal form we consider is called disjunctive normal form
(DNF) or sum of products (SOP).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

literals and products

We recall the definition of a literal.

Definition

A variable or a negation of a variable is called a literal.

Recall that the and connective is associative. Thus we may apply
it to multiple arguments without writing parenthesis. To simplify
notation, we use the · notation for the and connective so that

X · Y · Z

simply means (X and Y and Z). We often refer to such an and

as a product.

Definition

A formula that is the and of literals is called a product term.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Appearance of variables in products

a variable X appears in a product term p if either X or X̄ is
an argument of the and in p.

a variable might appear more than once in a term.
For example, X appears three times in the product term
(X · Y · X̄ · X).

Recall that:
1 X · X̄ is a contradiction
2 X · X is logically equivalent to X
3 X̄ · X̄ is logically equivalent to X̄ .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

simple products

Definition

A product term p is simple if every variable appears at most once
in p.

simple: X1 · X2 · X̄3

not simple: X1 · X2 · X̄1

Claim

Every product is a contradiction or logically equivalent to a simple
product.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Example - 1

The following formulas are product terms.

1 p1 = X · Y ,

2 p2 = Ā and B and C ,

3 p3 = L,

4 p4 = G ∧ (¬H) ∧ G .

The variables A,B and C appear in p2. The product term in p4 is
not simple, since the the variable G appears twice. On the other
hand, the product term in p1 is simple, since both X and Y appear
once.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Notation.

With each product term p, we associate the set of variables
that appear in p.

The set of variables that appear in p is denoted by vars(p).

Let vars+(p) denote the set of variables that appear in p that
appear without negation.

Let vars−(p) denote the set of variables that appear in p that
with negation.

Let literals(p) denote the set of literals that appear in p.

Example

Let p = X1 · X̄2 · X3, then vars(p) = {X1,X2,X3},
vars+(p) = {X1,X3} and vars−(p) = {X2}, and
literals(p) = {X1, X̄2,X3}.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Minterms

Definition

A simple product term p is a minterm with respect to a set U of
variables if vars(p) = U.

A minterm is a simple product term, and therefore, every variable
in U appears exactly once in p.

lemma

A minterm p attains the truth value 1 for exactly one truth
assignment.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

sum-of-products (SOP)

Recall that the or connective is also associative. We use the + to
denote the or connective. The or of multiple arguments is
written as a “sum”. For example,

X + Y + Z

simply means (X or Y or Z).
We often refer to such an or as a sum. Substitution allows us to
replace each occurrence of a variable by a product. This leads us
to the terminology sum-of-products.

Definition

A Boolean formula is called a sum-of-products (SOP) if it is a
constant or an or of product terms.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Examples

Each of the following formulas is a sum-of-products.

1 ϕ1 = X · Y + X · Y ,

2 ϕ2 = (Ā and B and C) or (A and B̄ and C) or D̄,

3 ϕ3 = L.

Each of the following formulas is not a sum-of-products.

1 (X + Y) · Z ,

2 (A or B) and (C or D).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

SOP representation

Definition

For a v ∈ {0, 1}n, define the minterm pv to be pv
△
= (ℓv1 · ℓ

v
2 · · · ℓ

v
n),

where:

ℓvi
△
=

{

Xi if vi = 1

X̄i if vi = 0.

Definition

Let f −1(1) denote the set

f −1(1)
△
= {v ∈ {0, 1}n | f (v) = 1}.

.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

SOP representation - cont

Definition

The set of minterms of f is defined by

M(f)
△
= {pv | v ∈ f −1(1)}.

Theorem

Every Boolean function f : {0, 1}n → {0, 1} that is not a constant
zero is expressed by the sum of the minterms in M(f).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

A “bad” example

Consider the constant Boolean function f : {0, 1}n → {0, 1} that is
defined by f (v) = 1, for every v .
The sum-of-minterms that represents f is the sum of all the
possible minterms over n variables. This sum contains 2n

minterms.
On the other hand, f can be represented by the constant 1.
The question of finding the shortest sum-of-products that
represents a given Boolean formula is discussed in more detail later
in this chapter.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Product of Sums

The second normal form we consider is called conjunctive normal
form (CNF) or product of sums (POS) .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

sum terms

Definition

A formula that is the or of literals is called a sum term.

a variable X appears in a sum term p if X or X̄ is one of the
arguments of the or in p.

A sum term is simple if every variable appears at most once in
it.

vars(p) = the set of variables that appear in p.

The notation vars+(p) and vars−(p) is used as well.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

examples

The following formulas are sum terms.
1

p1 = X + Y ,
2

p2 = Ā or B or C ,
3

p3 = L,
4

p4 = G ∨ (¬H) ∨ G .

The variables A,B and C appear in p2. The sum term in p4 is not
simple, since the the variable G appears twice. On the other hand,
the sum term in p1 is simple, since both X and Y appear once.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

maxterms

Definition

A simple sum term p is a maxterm with respect to a set U of
variables if vars(p) = U.

As in the case of a minterm, each variable appears at most once in
a maxterm since it is a simple sum term.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

relation to De Morgan duality

Recall that DM(ϕ) is the De Morgan dual of the formula ϕ.

observation

(1) If p is a minterm, then the formula DM(p) is a maxterm.
(2) If p is a maxterm, then the formula DM(p) is a minterm.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

POS representation

Definition

A Boolean formula is called a product-of-sums if it is a constant or
an and of sum terms.

Observation

(1) If p is a sum-of-products, then the formula DM(p) is a
product-of-sums.
(2) If p is a product-of-sums, then the formula DM(p) is a
sum-of-products.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

POS representation

Lemma

A maxterm p attains the truth value 0 for exactly one truth
assignment.

Theorem

Every Boolean function f : {0, 1}n → {0, 1} that is not a constant
one can be represented by a product of maxterms.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Representation by polynomials

Definition

The Galois Field GF (2) is defined as follows.

1 Elements: the elements of GF (2) are {0, 1}. The zero is called
the additive unity and one is called the multiplicative unity.

2 Operations:
1 addition which is simply the xor function, and
2 multiplication which is simply the and function.

In the context of GF (2) we denote multiplication by · and addition
by ⊕.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

GF (2) properties

We are used to infinite fields like the rationals (or reals) with
regular addition and multiplication. In these fields, 1 + 1 6= 0.
However, in GF (2), 1⊕ 1 = 0.

Observation

X ⊕ X = 0, for every X ∈ {0, 1}.

A minus sign in a field means the additive inverse.

Definition

The element −X stands for the element Y such that X ⊕ Y = 0.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

GF (2) properties - more

Observation

In GF (2), the additive inverse of X is X itself, namely −X = X,
for every X ∈ {0, 1}.

Thus, we need not write minus signs, and adding an X is
equivalent to subtracting an X .

The distributive law holds in GF (2), namely:

Observation

(X ⊕ Y) · Z = (X · Z)⊕ (Y · Z), for every X ,Y ,Z ∈ {0, 1}.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

GF (2) properties - even more

Let X k denote the product

X k △
=

k times
︷ ︸︸ ︷

X · · · · · X .

We define X 0 = 1, for every X ∈ {0, 1}. The following observation
proves that multiplication is idempotent.

Observation

X k = X, for every k ∈ N+ and X ∈ {0, 1}.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

A field is a field

The structure of a field allows us to solve systems of equations. In
fact, Gauss elimination works over any field. The definition of a
vector space over GF (2) is just like the definition of vector spaces
over the reals. Definitions such as linear dependence, dimension of
vector spaces, and even determinants apply also to vector spaces
over GF (2).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Examples

X1 ⊕ X2 = 0 ⇔ X1 = X2.

We show how to solve a simple systems of equalities over
GF (2) using Gauss elimination. Consider the following system
of equations

X1 ⊕ X2 ⊕ X3 = 0 ,
X1 ⊕ X3 = 0 ,

X2 ⊕ X3 = 1 .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Polynomials over GF (2)

Definition

A monomial in GF (2) over the variables in the set U is a finite
product of the elements in U ∪ {0, 1}.

Observation

Every monomial p in GF (2) over the variables in U equals a
constant or a product of variables in p.

By commutativity: X1 · X2 · X3 · X1 = X 2
1 · X2 · X3.

Positive exponents can be reduced to one. For example,
X 2

1 · X2 · X3 equals X1 · X2 · X3.

Constants can be eliminated. X · 0 = 0 , X · 1 = X .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Polynomials

Definition

A polynomial in GF (2) over the variables in the set U is a finite
sum of monomials.

Example: X1 · X2 ⊕ X1 · X3 ⊕ X2 · X3.
We denote the set of all polynomials in GF (2) over the variables in
U by GF (2)[U]. Just as multivariate polynomials over the reals
can be added and multiplied, so can polynomials in GF (2)[U].

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

representation by polynomials in GF (2)[U]

Every polynomial p ∈ GF (2)[U] is a Boolean function
fp : {0, 1}|U| → {0, 1}. The converse is also true.

Theorem

Every Boolean function f : {0, 1}n → {0, 1} can be represented by
a polynomial in GF (2)[U], where U = {X1, . . . ,Xn}.

proof outline

easy: f is constant.

f −1(1)
△
= {v ∈ {0, 1}n | f (v) = 1}.

For each v ∈ f −1(1), we define the product pv . The
polynomial p ∈ GF (2)[U] is defined as follows.

p
△
=

⊕

v∈f −1(1)

pv .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Side effect

Corollary

The set of connectives {xor,and} is complete.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Satisfiability

The problem of satisfiability of Boolean formulas is defined as
follows.

Input: A Boolean formula ϕ.

Output: The output should equal “yes” if ϕ is satisfiable. If ϕ
is not satisfiable, then the output should equal “no”.

Note that the problem of satisfiability is quite different if the input
is a truth table of a Boolean function. In this case, we simply need
to check if there is an entry in which the function attains the value
1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Relation to P vs. NP

The main open problem in Computer Science since 1971 is whether
P = NP . We will not define the classes P and NP , but we will
phrase an equivalent question in this section.
Consider a Boolean formula ϕ. Given a truth assignment τ , it is
easy to check if τ̂(ϕ) = 1. We showed how this can be done in
Algorithm EVAL. In fact, the running time of the EVAL algorithm
is linear in the length of ϕ.
On the other hand, can we find a satisfying truth assignment by
ourselves (rather than check if τ is a satisfying assignment)?
Clearly, we could try all possible truth assignments. However, if n
variables appear in ϕ, then the number of truth assignments is 2n.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Satisfiability and P vs. NP

We are ready to formulate a question that is equivalent to the
question P = NP .

Satisfiability in polynomial time

Does there exist a constant c > 0 and an algorithm Alg such that:

1 Given a Boolean formula ϕ, algorithm Alg decides correctly
whether ϕ is satisfiable.

2 The running time of Alg is O(|ϕ|c), where |ϕ| denotes the
length of ϕ.

This seemingly simple question turns out to be a very deep
problem about what can be easily computed versus what can be
easily proved. It is related to the question whether there is a real
gap between checking that a proof is correct and finding a proof.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Minimization Heuristics

We consider the following minimization problem.

Input: A truth table of a Boolean function
f : {0, 1}n → {0, 1}.

Output: An SOP Boolean formula ψ such that the Boolean
function Bψ defined by ψ satisfies: f = Bψ.

Goal: Find a shortest SOP ψ such that Bψ = f .

Don’t expect an efficient algorithm!

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Example

X Y Z f (X ,Y ,Z)

0 0 0 1
1 0 0 0
0 1 0 1
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

ϕf = X̄ · Ȳ · Z̄ + X̄ · Y · Z̄ + X · Ȳ · Z + X̄ · Y · Z + X · Y · Z .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Example - cont

ϕf = X̄ · Ȳ · Z̄ + X̄ · Y · Z̄ + X · Ȳ · Z + X̄ · Y · Z + X · Y · Z .

There are two shortest SOP formulas ϕ1, ϕ2 that are logically
equivalent to ϕf , as follows.

ϕ1 = X̄ · Z̄ + X · Z + X̄ · Y ,

ϕ2 = X̄ · Z̄ + X · Z + Y · Z .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Assumptions

f denotes a Boolean function

ϕf is a Boolean formula that represents f (i.e., ϕf is the sum
of the minterms of f).

the Boolean function f is not a constant function. Therefore,
ϕf is satisfiable and not a tautology.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Implicants

Definition

A satisfiable product term p is an implicant of f if (p → ϕf) is a
tautology.

We denote the set of implicants of f by I(f). Note that an
implicant must be satisfiable, and hence an implicant cannot
contain both a variable and its negation as literals.

Claim

Every minterm pv ∈ M(f) is a implicant of f , hence M(f) ⊆ I(f).

Claim

The sum (or) of the implicants of f is logically equivalent to ϕf .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Implicants - properties

The following claim shows that I(f) is closed under “subsets” in
the sense that removing part of the literals from an implicant keeps
it an implicant.

Claim

Let p ∈ I(f). If q is a satisfiable product and
literals(p) ⊆ literals(q), then q ∈ I(f).

Claim

For every two satisfiable products p, q, the following holds:

(p → q) is a tautology ⇔ (literals(q) ⊆ literals(p)).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Prime Implicants

A prime implicant is an implicant that is minimal with respect to
containment.

Definition

An implicant p ∈ I(f) is a prime implicant of f if the following
holds:

∀q ∈ I(f) : literals(q) ⊆ literals(p)⇒ (literals(q) = literals(p)).

We denote the set of prime implicants of f by I ′(f).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

immediate predecessor

Definition

Let p, q ∈ I(f). We say that p is an immediate predecessor of q if:

literals(q) ⊆ literals(p), and

literals(p) \ literals(q) contains a single literal.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

The Implicants’ Graph

One usually defines a partial order over the implicants of a Boolean
function by containment of the set of literals. We represent this
partial order by a directed graph which we call the implicants’
graph.

Definition

The implicants’ graph Gf = (V ,E) of a Boolean function f is a
directed graph defined as follows.

1 V
△
= I(f).

2 E
△
= {(p, q) ∈ V × V | p is an immediate predecessor of q}.

Claim

The implicants’ graph is a acyclic.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Prime implicants are sinks in the implicants’ graph

Definition

The implicants’ graph Gf = (V ,E) of a Boolean function f is a
directed graph defined as follows.

1 V
△
= I(f).

2 E
△
= {(p, q) ∈ V × V | p is an immediate predecessor of q}.

Lemma

An implicant p ∈ I(f) is a prime implicant iff it is a sink in Gf .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

What about implicants that are not prime?

Claim

If p ∈ I(f) \ I ′(f), then the following two statements hold:

There exists an implicant q ∈ I(f) such that p is an
immediate predecessor of q.

There exists a prime implicant q ∈ I ′(f) such that
literals(q) ⊂ literals(p).

Proof: p is not a sink so consider a maximal path from p.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Essential Prime Implicants - preliminaries

We now define a covering relation between minterms and prime
implicants. Recall that M(f) denotes the set of minterms of f , and
I ′(f) denotes the set of prime implicants of f .

Definition

The covering relation Cf ⊆ M(f)× I ′(f) is the set

Cf
△
= {(r , p) ∈ M(f)× I ′(f) | r → p is a tautology}.

Observation

Let (r , p) ∈ M(f)× I ′(f). Then, (r , p) ∈ Cf iff there exists a path
from r to p in the implicants’ graph Gf .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

essential prime implicants

Cf
△
= {(r , p) ∈ M(f)× I ′(f) | r → p is a tautology}.

Definition

A prime implicant p ∈ I ′(f) is an essential prime implicant if there
exists minterm r such that p is the only prime implicant that
covers r .

We denote the set of essential prime implicants of ϕ by Ie(f).

Observation

A prime implicant p ∈ I ′(f) is an essential prime implicant iff
there exists a minterm r such that every path in Gf from r to a
prime implicant ends in p.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Essential prime implicants - property

Definition

A prime implicant p ∈ I ′(f) is an essential prime implicant if there
exists minterm r such that p is the only prime implicant that
covers r .

Claim

A prime implicant p ∈ I ′(f) is an essential prime implicant iff
there exists a truth assignment τ such that

τ̂(p) = 1, and

τ̂(q) = 0, for every q ∈ I ′(f) \ {p}.

Proof: correspondence between τ and the minterm r that is only
satisfied by τ .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Prime implicants suffice

Claim

The sum (i.e., or) of the prime implicants of f is logically
equivalent to ϕf .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Replace non-prime implicants by prime implicants

Suppose that f is represented by an SOP that contains an
implicant that is not prime. Can this SOP be shortened? The
following claim shows that we can substituting a non-prime
implicant by a prime implicant (that covers the non-prime
implicant) to make the SOP shorter.

Claim

Let p ∈ I(f) \ I ′(f). Let ϕ ∈ BF , such that (ϕ ∨ p) is equivalent
to ϕf . Then, there exists q ∈ I ′(f) such that:

literals(q) (literals(p), and

(ϕ ∨ q) is equivalent to ϕf .

Corollary

If ψ is a shortest SOP formula that is logically equivalent to ϕf ,
then every product term in ψ is a prime implicant of f .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Essential prime implicants are essential

Claim

Suppose that

ψ is the sum of a subset of the prime implicants of f , and

ψ is logically equivalent to ϕf .

Then, every essential prime implicant p ∈ I ′(f) appears as a
product term in ψ.

We remark that there exist Boolean functions f such that f is not
logically equivalent to the sum of the essential prime implicants of
f .
For example, consider the function f represented by the Boolean
formula ϕf (X ,Y ,Z) = X̄ · Z + Y · Z + X · Y + X · Z̄ + Ȳ · Z̄ .
Only X̄ · Z and Ȳ · Z̄ are essential.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Heuristic for Min SOP

Heuristic for finding a shortest SOP ψ that represents f .

1 Compute I ′(f) and Ie(f).

2 Add every product in Ie(f) to ψ.

3 Find a shortest subset A ⊆ I ′(f) \ Ie(f) such that adding the
products in A to ψ makes ψ logically equivalent to ϕf .

Last step uses exhaustive search.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

The Quine-McCluskey Heuristic

Algorithm for computing the prime implicants and the essential
prime implicants of formula ϕ. The algorithm simply constructs
the implicants’ graph of f . The specification of the algorithm is as
follows.

Input: A truth table Tf of a nonconstant Boolean function
f : {0, 1}n → {0, 1}.

Output: The sets I ′(f) and Ie(f) where I ′(f) and Ie(f) are
the sets of prime implicants and essential prime
implicants of f , respectively.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Terminology

Definition

The symmetric difference of two sets A,B is the set
(A \ B) ∪ (B \ A).

We denote the symmetric difference by A△B .

Definition

Let p and q denote two satisfiable product terms.

1 The product term p ∩ q is the product of the literals in
literals(p) ∩ literals(q).

2 If vars(p) = vars(q), then the distance between p and q is
defined by

dist(p, q)
△
=

∣
∣{i : {Xi , X̄i} ⊆ literals(p)△literals(q)}

∣
∣ .

If vars(p) 6= vars(q), then define dist(p, q)
△
=∞.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Quine-McCluskey Heuristic

Algorithm 1 QM(Tf) - An algorithm for computing the prime im-
plicants of f : {0, 1}n → {0, 1} given its truth table Tf .

1 Construct the implicants’ graph Gf over implicants of f
1 In ← {p | p is a minterm of f }.
2 For k = n downto 2 do:

1 Ik−1 ← ∅.
2 For each pair of implicants p, q ∈ Ik such that dist(p, q) = 1

do

Ik−1 ← Ik−1 ∪ {p ∩ q}

add p −→ (p ∩ q) and q −→ (p ∩ q) to G .

2 Return {p | p is a sink in G}.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Quine-McCluskey Heuristic - correctness

Claim

If p, q ∈ I(f) and dist(p, q) = 1, then p ∩ q ∈ I(f).

Theorem

Each set Ik constructed by algorithm QM(Tf) equals the set of
implicants of f that contain k literals.

Claim

Algorithm QM(Tf) constructs the implicants’ graph Gf .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Finding the essential prime implicants

Algorithm QM(Tf) computes the implicants’ graph. The essential
prime implicants can be computed as follows.

1 For each minterm r , compute the set of sinks in Gf that are
reachable from r .

2 If this set contains a single sink p, then add p to Ie(f).

3 After all minterms have been scanned, return Ie(f).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

The hypercube

The Hamming distance between u, v ∈ {0, 1}n is defined by

dist(u, v) = |{i | ui 6= vi}|.

The hypercube is the graph Hn = ({0, 1}n ,En), where

En
△
= {(u, v) | dist(u, v) = 1}.

0 1 011 111

110

101

100

001

010

00000 01

1110

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Minterms and implicants in the hypercube

Mark the vertices v for which f (v) = 1.

marked vertices = minterms

edge with both vertices marked = implicant with 2 literals

face with all vertices marked = implicant with 1 literal

0 1

00 01

1110

011 111

110

101

100

001

010

000

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Karnaugh Maps

A tabular method to obtain the prime implicants and the essential
prime implicants is called Karnaugh Maps. This method works
reasonably well for Boolean functions f : {0, 1}n → {0, 1} where
n ≤ 4. The idea is as follows:

1 Write the multiplication table of f . It useful to order the
columns and rows in a Gray code order.

2 Identify a × b “generalized” maximal rectangles of all-ones in
the table where both a and b are powers of 2.

3 Each such maximal rectangle corresponds to a prime
implicant.

4 If a “1” is covered only by one such rectangle, then this
rectangle corresponds to an essential prime implicant.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Karnaugh Maps - example

YZ
X

00 01 11 10

0 1 0 1 1

1 1 1 0 1

YZ
X

00 01 11 10

0 1 0 1 1

1 1 1 0 1

YZ
X

00 01 11 10

0 1 0 1 1

1 1 1 0 1

YZ
X

00 01 11 10

0 1 0 1 1

1 1 1 0 1

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

