Digital Logic Design: a rigorous approach © Chapter 2: Induction and Recursion

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 10, 2012

Book Homepage:

http://www.eng.tau.ac.il/~guy/Even-Medina

Induction - an example

Definition

$$S_n \stackrel{\triangle}{=} \sum_{i=1}^n i$$
.

Theorem

$$S_n = \frac{n \cdot (n+1)}{2}.\tag{1}$$

Proof by induction

Abstract formulation: denote by P the set of all natural numbers n that satisfy a property we are interested in. Our goal is to prove that every n satisfies this property, namely, that $P = \mathbb{N}$. The proof consists of three steps:

- **1** Induction basis: prove that $0 \in P$.
- 2 Induction hypothesis: assume that $n \in P$.
- **3** Induction step: prove that if $n \in P$, then $n + 1 \in P$.

Theorem

Let $P \subseteq \mathbb{N}$. If (i) $0 \in P$ and (ii) $n \in P$ implies that $(n+1) \in P$, for every $n \in \mathbb{N}$, then $P = \mathbb{N}$.

Induction - another example

A generalization of De Morgan's law to more than two sets. Here, the statement is about sets, not numbers.

Theorem

For every $n \geq 2$ sets A_1, \ldots, A_n ,

$$U \setminus (A_1 \cup \cdots \cup A_n) = \bar{A}_1 \cap \cdots \cap \bar{A}_n.$$
 (2)

Recursion

A method to define a function (or other structures) for large arguments from small arguments.

Advantages: simple and suits induction.

A recursive definition of a function $f : \mathbb{N} \to \mathbb{N}$ has two parts:

- \bigcirc the base cases for small values of n

Recursion: the factorial function

Definition

the factorial function $f: \mathbb{N}^+ \to \mathbb{N}^+$ is defined recursively by:

- (i) Base case: f(1) = 1.
- (ii) Reduction rule: $f(n+1) = f(n) \cdot (n+1)$.

Claim

$$f(n) = 1 \cdot 2 \cdot \cdot \cdot \cdot n$$
.

Proof.

By induction on n.

Notation: denote f(n) by n!

Recursion: Fibonacci sequence

Definition

We define the function $g: \mathbb{N} \to \mathbb{N}$ recursively as follows.

- (i) Base case: g(0) = 0 and g(1) = 1.
- (ii) Reduction rule: g(n+2) = g(n+1) + g(n).

Following the reduction rule we obtain:

$$g(2) = g(1) + g(0) = 1 + 0 = 1.$$

$$g(3) = g(2) + g(1) = 1 + 1 = 2.$$

$$g(4) = g(3) + g(2) = 2 + 1 = 3.$$

$$g(5) = g(4) + g(3) = 3 + 2 = 5.$$

Self-reference does not lead to an infinite loop. Why? Self references are to smaller arguments so the chain of self-references eventually ends with a base case.

Recursion: Fibonacci sequence (cont.)

Recall: g(0) = 0, g(1) = 1, and g(n+2) = g(n+1) + g(n). Denote the golden ratio by $\varphi \stackrel{\triangle}{=} \frac{1+\sqrt{5}}{2}$. $\varphi \approx 1.62$ is a solution of $x^2 = x + 1$

Lemma

$$\forall n \in \mathbb{N} \ g(n) \leq \varphi^{n-1}$$

Proof: induction on n.

Recursion: conclusions

- a way to define a function, a structure, or even an algorithm.
- bases cases for $n < n_0$
- reduction rules for $n > n_0$
- easy to formulate
- easy to prove properties using induction.