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Part |
Linear simultaneous equations



4
Case studies of linear simultaneous equations

(i) Solution of Kirchhoff’s laws in a simple electrical cud
(Sectior4.1), and

(i) Search for a set of inputs to a “discrete-time lineartegs’ that will
bring the system to a desired state (Sectidi).



4.1 Analysis of a direct current linear circuit
4.1.1 Motivation

e \We want to calculate the behavior of a circuit.
e Circuits are characterized W§irchhoff’s laws.



4.1.2 Formulation

e Consider a circuit consisting of interconnectedistorsandcurrent
sourcesas shown in Figurd.l

e A circuit can be thought of as a special type of graph wherdthaches
are components.

e \We want to:

— calculate all the electrical quantities associated wighdincuit, and
— characterize how these quantities change if the circuihgés.

1 2 3 4
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Fig. 4.1. A ladder cir-
cuit consisting of resis-
tors and current sources.




4.1.2.1 Variables of interest
e Basic issue in problem formulation is to identify and digtirsh:

— the variables of interest from
— the variables that are of less importance.

e This choice is one aspect Gfccam’s razor.

— The model should be no more complicated than is necessagpitesent
the important issues, where “important” depends on ourpeets/e.

e In typical circuits, we seek values of:

— the voltages across the resistors and current sources, and
— the currents through the resistors.

e We usually neglect most other quantities.
e For this problem, we could either:

— use thenodal voltagesas the independent variables and calculate the
current flowing through each resistor in terms of the nodéibges, or

— use thebranch currents as the independent variables and calculate the
branch voltages in terms of the branch currents.

e A nodal based description will have less variables.



4.1.2.2 Kirchhoff’s voltage law

e Kirchhoff’s voltage law expresses the fact that the voltage around any
loop is zero.

e This means that we can single out one of the nodes and cadl @atum or
ground node and measure all voltages with respect to thendatliage.

e We writex, for the voltage of nod& = 0, ..., n with respect to the datum
voltage, wherd = O is the datum node.

¢ Kirchhoff’s voltage law is an example of@nservation law

4.1.2.3 Branch constitutive relations

e Thebranch constitutive relations express the relationship between
branch current and voltage.

e For a resistor there is a linear relationship between w@ststrrent and
voltage.

e For a current source, the branch current is constant.



4.1.2.4 Kirchhoff’s current law
e Kirchhoff’s current law expresses conservation of chargemcurrent is
flowing in a circuit.

e The net current flowing from node 1 into the components intidie
node 1 is:

X1—Xo  X1—X2
_|_

Ra Ry

_Ila

e Re-arranging:

<F1-a F:Ql-b> X1+( Fi-b) Xo = |4. (4.1)

1 1 1 1 1
( Rb) x1+<Rb Rc Rd) xz+( Rd) X3 = 0, (4.2)
1 1 1 1 1
( Rd>X2+<Rd Re ' Rf>X3+< Rf)X4 -0 69
1 1 1
( Rf) X3-|—<Rf Rg) = 4. (4.4)



4.1.2.5 Nodal admittance matrix and voltage and currentmec
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e The matrixA is called thenodal admittance matrix.
e The variablexg is not included in our definition of the vectar



Nodal admittance matrix and voltage and current vectortcwed

(4.7)

4.1.2.6 Linear equations

_ZgzlAka_
AoiX
Ax— | 2k=12K%
¥ 1 A3k
| Y it Ak
e If we write Ax= b, we reproduce the nodal equatiodslj—(4.4) for our

system.
e We callA the coefficient matrix, while b is called theight-hand side.




4.1.3 Changes

e In our ladder circuit, there are two types of circuit compatsehat can
change:

— either the currents from the current sources vary, corredipg to a
change in the right-hand side of the linear systbnor

— the resistances vary, corresponding to a change in the @eatfmatrix
of the systemA.

e For each type of component or parameter change, we can eomsiol
related notions of change:

() infinitesimal changes in component or parameter values,
providing asensitivity analysis and
(i) large changesn component values or parameters.



4.1.3.1 Sensitivity

e Sensitivity analysis sometimes calledmall-signal sensitivity analysis
in the context of circuit theory, is the calculation of a fertlerivative of
the solutionx®, or a function of the solution, with respect to some
parameter.

e For example, we might want to calculate the partial deneatif the
solution for a particular voltage, say, with respect to the value of:

k

— a current source, sdy, to obtamglx

*

— aresistor, say, to obtamg

Rb*

— the temperaturel, to obtalng.)l.(



Sensitivity, continued

e As another example of a sensitivity analysis, we may alsd vean
consider the sensitivity of performance criterion or objective function
to variations in parameters.

e For example, consider the functidn R* — R defined by:

e BY F(0) = ()2 +200)°+306)° +40a)%  (4.8)

¢ \We might want to calculate the derivative Df(e) = f(x*(e)), with
respect to the value of:

*

— a current source, sdy, to obtain%,
*

— a resistor, saRy, to obtainﬂ, or

oRy

— the temperaturel, to obtain%.



4.1.3.2 Large changes
Change in current source

e Consider a variation in the current injectibpat node/ by an amount\y,
e The new circuit must satisffx = b+ Ab.

Ri 4 R F+—
GE [R; 6@ @ @ @ 69 Fig. 4.2. The ladder

circuit of Figure 4.1

with a change,Aoy, in

. ° . . the current injected at
0 nodel = 2.




Change in resistance

e Consider a variation in the resistance of the resistorpgmoded andk.

e The change i\ is MA, whereMA has zeros everywhere except in téeh,
¢k-th, ké-th, andkk-th entries.

e The new circuit must satisfgA+ AA)X' = b.

4@:3_ Fig. 4.3. The ladder
1 2 3 4 circuit of Figure 4.1
—1/R—+—{I1/R¢—+—1/Rf-+— with resistors re-labeled

with their conductances
and with a change in the

CTD E| 1 H H 69 conductance  between
Ra Re Re Ry nodes/ = 2 andk = 3.

Note that the convention
for labeling the resistors

. . has changed compared
to the previous figures.




4.1.4 Problem characteristics
4.1.4.1 Numbers of variables and equations

e SinceAis a square matrix, we calix = b asquare system of linear
equations.

4.1.4.2 Solvability

e Since this circuit always has a unique solutié®,— b is solvable for any
givenb and there is only one solution.



4.1.4.3 Admittance matrix

Vi=1,...,nVvk=1,....n,

([ sum of the conductances connected to ngde
if /=K,

A minus the conductance joinirfgandk,
k= 4 if g # k and there is a resistor betweéandk,

0,
\ if £+ kand there is no resistor betweéandk.

(4.9)

Symmetry
e Ais symmetric.



Sparsity

¢ In a large ladder circuit, thA matrix would be mostly zeros.

e We call a matrixsparseif most of its entries are zero.

e By choosing as datum node the node with the most branchekeimdio
it, we will minimize the number of non-zeros in the admittarmatrix.

Fig. 4.4. A graph with

n = 8 nodes and all

-l — 28 possible

branches. For clarity in
this graph, each node is
represented by a bullet
e, while each branch
is represented by a
line. This is a different

convention to that used
in figures4.1-4.3.




Diagonal dominance

e Entry Ay in Alis greater than the sum of the absolute values of the other
entries in the/-th column ofA.
e Such a matrix is calledtrictly diagonally dominant.



Changes in the admittance matrix
e For a change in a resistor between notlaadk:

[ /-th column k-th column ]
= =~
DA = NGy 1 —1 } C-throw | (4.10)
-1 1 } k-th row

e For a change in a resistor between né@dad the datum node:

- /-th column
=

M = AG : 4.11
° 1 } £-th row *11)




4.2 Control of a discrete-time linear system
4.2.1 Motivation
¢ Investigate the conditions under which we can shiftdtate of the
system to a desired final value by adjusting the inputs ovegaence of
time intervals.
e That is, we are going to consider tbhpen loopcontrol of the system.



Motivation, continued

- plant

Fig. 4.5. A feedback
control system applied
to a plant.

Iy

controlle

¢ In afeedback controller, as illustrated in Figurd.5, we use the output
(or the state) of the system to decide on the controls.

e Furthermore, iroptimal control we recognize the costs of certain control
actions and states.

e These pose somewhat different problems to the one we igagstin this
case study.

e However, several of the issues turn out to be similar.



4.2.2 Formulation
4.2.2.1 Variables

e Thestateof the system is the smallest set of variables; R™, say, such
that:

— wincludes all the variables of interest as a sub-vector, and

— knowledge of the value oi for any particular time = tg, together with
knowledge of the values of the inpuft) to the plant fort; >t > tg
completely specifies the value wffor any timet; >t > to.

e We writew(KT) for the value ofw at thek-th sampling instant.
e \We assume that the input stays constant betweekrthand(k+ 1)-th
sampling instant so thai(t) = u(kT),kT <t < (k+1)T.



4.2.2.2 Behavior of system

e By the definition of state, the value of the state at tkileand the value of
the input for periodk determines value of the state at tirfie+ 1)T.

e That s, for eaclk, there exists a functiog®) : R™x R — R™:

vke Z,w((k+1)T) = ¢®(w(KT),ukT)),
Linear: VkeZYweR™vVueR,®wu) = cHw+h®y,
Time-invariant: vke Z,w((k+1)T) = @w(kT),u(kT)),
Linear time-invariant :
vke Z,ywe R™ vue R, ¢d¥(wu) = Gw+hu
e Linear time-invariant systems behave according tadifference
equation:
vk e Z,w([k+1]T) = GW(KT) + hu(kT). (4.12)

e G is called thestate transition matrix.



4.2.2.3 Changing the state of the system

e Attime kT = 0 the plant is in state/(0) € R™ and we would like it
instead to be in some other desired final stefigfedc RM,

e That is,w(nT) = wdesired
w(nT) = GwW([n—1]T)+hu([n—1]T),
on substituting fow(nT) from (4.12 for k=n—1,
= (G)W([n—2]T)+Ghu[n—2]T) +hu([n—1]T),
on substituting fow([n—1]T) from (4.12 fork=n-—2,
= (G)*wW([n—3T)+(G)*hu([n—3T)
+Ghu([n—2]T) +hu([n—1]T), continuing

= (6)"W(0)+ ¥ (G)"*hu(kT).
k=0



Changing the state of the system, continued
e Define:

A = [(G)"th (G)"*h --- Gh h],

Lu([n—1JT) |
b — Wdesired_ (G)nW(O).



Changing the state of the system, continued

e Then:

u(0T) i
u(1T)

Ax = [(G)™th (G)"*h --- Gh h] |: :
u([n—2JT)
Lu([n—2JT) |

- nf(c;)“—l—khu(kT).
k=0

e W(nT) will be equal towdesiredi:
Wdesired: (G)nW(O) +AX

e Thatis:
Ax=Dh. (4.13)



4.2.2.4 Example
e Suppose that =2, m= 2, and:

h =

| I
N
| I

w(0) =

Wdesired _

NWw Wk RO RO




Example, continued
e Then:

A = [Gh hl,
1]

b — Wdesired_ (G)nW(O),

e Solving forx, we obtain:



Example, continued

e For this particular example, it is also possible to find a muni(0T) that
achieved the desired final state in one time-step; thatis) fo1.
e In particular, there is a solutiom 0T ) € R to:

hu(0T) = waesied_ Gw(0),

namelyu(0T) = 3.
e However, it will typically require more than one time-stepeichieve a
desired state.



4.2.2.5 Labeling of vector and matrix entries

e The columns oA are labeled from O ton—1).

e This contrasts with the labeling of the variables in the cdady in
Sectiord.1 where the entries were labeled from Into

¢ In general, we can label the entries of a vector in any way voesé.

4.2.3 Changes
4.2.3.1 Initial and desired state

o If wdesi*dor (0 change, then the right-hand sidén the linear
equation 4.13 will also change correspondingly.

4.2.3.2 System

e If the behavior of the plant changes, then the state transitiatrixG and
therefore the coefficient matrikin (4.13 will change.



4.2.4 Problem characteristics
4.2.4.1 Numbers of variables and equations
e The number of variables ig which is equal to the number of entriesin
but the number of equations is equahtpwhich is the number of entries
in b.
4.2.4.2 Solvability

e It is not always the case that.(3) is solvable.
e Solvability will depend orG, h, wiesi™®d w(0), and onn.

4.2.4.3 Coefficient matrix

e The coefficient matrix is not symmetric and has different bems of rows
and columns.



5
Algorithms for linear simultaneous equations

e Consider generally how to solve large systems of the form:
Ax=h. (5.1)

e Ais called thecoefficient matrix, while b is called theright-hand side
vector.



e First consider special cases of coefficient matrices:

2 3 4
Upper triangular: U= |0 —3 -9/, (5.2)
O 0 1
100
Lower triangular: L= |4 1 0 (5.3)
4 21
3
Key issues

e Solution oftriangular systemsandfactorization of matrices,

e computational effort and particular features of problems, such as
symmetry andsparsity that can reduce the necessary computational
effort,

e sensitivity analysisandill-conditioning,

e solution ofnon-square systems



5.1 Inversion of coefficient matrix

e Suppose thaA is invertible with inverseA™.
e Letx=A"1b.
e Then:

Ax = AAb,
= |b, by definition of inverse,
— b, by definition ofl.

e Craner’s rule says that¢-th entry ofA=L is given by:
(-1 K times
the determinant of the matrix obtained fréhby deleting its/-th row
andk-th column, divided by
the determinant oA.

e Computational effort is on the order nf arithmetic operations.
e If nis large then Cragr’s rule is impractical because the calculation of
determinants is too computationally intensive.



Inversion of coefficient matrix, continued
e Nevertheless, Craan’s rule can be extremely useful for:

— proving properties of matrices,

— inverting small matrices, since Cramns rule allows the inverse to be
written down explicitly. For example, fok € R%*?, if
A11A20 — A1oA21 # 0 thenAis invertible and:

AL 1 [ Ao —A12]’ (5.4)

- A11A22—A12A21 —A21 All
— inverting specific types of matrices.



5.2 Solution of triangular systems
5.2.1 Forwards substitution
5.2.1.1 Analysis

e If L is lower triangular theth = 0,V/ < k.
e Suppose we want to fingt € R" satisfyingLy = b.

e (We will see in Sectiorb.3.1the reason for choosingas the decision
variable instead of.)

b1 = Ly,
= Logy1 + Looyo,
bs = L31y1+ L3oyo + L3ays,

o
N
|

bn = Lniy1+Ln2y2+Lngys+ -+ Lnnyn.



Analysis, continued
e Re-arranging:

by
Y1 = :5117
—L
yy = 2 21)’1,
22
by—S, 7L
v = 2 2k=1 kY (5.5)

Lee
e This process is callefbrwards substitution.



5.2.1.2 Example

100

L= |410],
431
C 9

b - 18],
28
9

o= |-F|
1




5.2.2 Backwards substitution

5.2.2.1 Analysis

e If U is upper triangular thed, = 0,V¢ > k

e Suppose that € R" is given and we want to solugx =y.

Uiixs + -+ + Uppn2Xn—2+Upn-1X-1 + UinXn = VY1,

Unon-2Xn2+Un2n-1Xn-1+Un-2nXn = Yn-2,
Un—1n-1Xn—1+Un_1nXn = Yn-1,
UnnXn = Yn.



Analysis
e Re-arranging:

Yn
X e -
n Un,n’
Yn-1—Un_1nXn
Xn—1 = )
Un—l,n—l
n
« Yo — ¥ epr1 YUk
{ — .

Uy
e This process is callebackwards substitution.



5.2.2.2 Example

2 3 4
Uu=10-3 -9/,
0 0 1
[ 9
2
y = _777
1
1
X = |1
1




5.2.3 Computational effort
5.2.3.1 Forwards substitution
e Forwards substitution calculatgs/ =1,...,n.
e Calculation ofy; requires a division.
e Calculation of eacly, for / = 2,... nrequires:(¢ — 1) multiplications,
(¢ — 2) additions, a subtraction, and a division.
e In total, this is:
n

[ZZ(E -1) = %(n — 1)n multiplications

n

/2(6—2) = }(n—Z)(n—l) additions
=2

2
(n—1) subtractions
n divisions



5.2.3.2 Backwards substitution

e Backwards substitution calculates/=n,..., 1.

e Calculation ofx, requires a division.

e Calculation of eacl, for / = (n—1),...,1 requires:(n—/¢)
multiplications,(n— ¢ — 1) additions, a subtraction, and a division.

e In total, this is:

n—1

;(n—f) = %(n—l)n multiplications
=1

n—1 1
; (n—¢-1) = é(n—2)(n—1) additions
1

(n— 1) subtractions
n divisions

5.2.3.3 Overall
e Overall effort is on the order of theguareof the number of variables.



5.3 Solution of square, non-singular systems
5.3.1 Combining forwards and backwards substitution

e Suppose that we can factoride= R"" into LU, with L lower triangular
andU upper triangular:

b = Ax the equation we want to solve,
= LUX, sinceA= LU,
= L(Ux),
= Ly,
e Wherey = UX.

e We have transformed the problem of solvig= b into the solution of
three successive problems:

(i) factorization ofA into LU,
(i) forwards substitution to solvey = b, and
(i) backwards substitution to solugx =y.

e If Ais singular then we cannot factori2anto LU with L andU having
non-zero diagonal entries.



5.3.2 LU factorization

e We will specify a series of “stages” to implement the alduonit

e MU) represents a matrix that is defined in fhth stage of the algorithm.

e To factorizeA, we will multiply it on the left by the non-singular matrices
MO, M@ MO-1 such that the matrid = MO-DM(-2)... MDA
IS upper triangular.

e At each stage, the product:

AU = MM U-D o@D A

will become successively “closer” to being upper triangula
e We will choose theM)), j =1,...,n— 1 to have two additional
properties:

(i) eachM{) will be lower triangular and therefore have a lower
triangular inverse, and

(ii) [M(j)]_l, the inverse oM, will be easy to compute.



LU factorization, continued
o \We let:

L — [M(n_l)l\/l(l)]_’
= MOy

e Thatis,L is the product ofn— 1) lower triangular matrices and,
thereforeL is also lower triangular.

1

W = MO DM@ M= MDA, by definition,

= A
e SO thatA has been factorized intdJ.



5.3.2.1 First stage

Pivoting
e In the first stage of the algorithm, we let:
1 O-.-.- .- 0]
—Ly1 1 - :
MO =] 150 1 . ], (5.6)
oo . 0
| —Lnp O -+ 0 1

e WhereL,; = As1/A11,4 =2,....n,
e DefineA® = MDA,



Pivoting, continued

gy
A2 _ | O Ax o Ay

: (5.7)

2

0 Ar<12) A'(“Zn)_

AZ = A~ LAy, 1< ,k<n,

Ag) = A1 —LpA1, forl </ <n,
An
= App——A1s,
AL
= Ain—An,

e \We have zeroed the entries in the first colummdifelow its first entry.
e \We say that we havpivoted on the entryA1.



Pivoting, continued

e Note that:
1 0 ... ... o 1 0 ... ... o 1 0 .. O
—Ly1 1 "-. : Lo 1 - 0o 1 - :
—L3101 : L3101 = . . _.',
f o 0 : .. .. 0 6 0'2
L O -~ 0 1] [LpO--- 0 2] L :
e SO that:
"1 0 ... ... 07
3 Lo 1 :
MO =15, 0 1 :
R .0




Small or zero pivot

e The construction will fail ifA;1 = 0.

e If Aj1is small in magnitude compared £9; thenL,; = Ay1/A11 will be
large in magnitude.

e For moderate to large values Afy this will mean that the produdt;; Ak
can be large compared &y.

e If so, A — L,1A Will have an error, due to round-off error, that is large
compared tdA\y.

e That is, the calculated valud>°*" differs from the exact value by

(2,error),
A

Aéi’calc) = A — LetAk+ Aéi’error)~ (5.8)
Error analysis

e We can re-arranges(8) to:

Aéi,cald _ (A£k+Aéi,err00) —LuAp,

e Where we now imagine the error as being in the original enttiA.o



Permuting rows and columns

e If A;1 =0 (or if A11is small in magnitude), bud # O for some/ andk
then we can reorder the rows and columns and pivadQmnstead.
e This simply corresponds to permuting:

— equatiory is re-numbered to be equation 1, and
— variablek is re-numbered to be variable 1.

e This approach is callefdlll pivoting .

Partial pivoting

e Instead of permuting both rows and columns we can only pexnsaty,
rOws.

e The permutation of the rows can be represented by multiglfion the
left by a permutation matri ¢ R™":

[0



Diagonal pivoting

e Equation/ is re-numbered to be equation 1, and
e Variable/ is re-numbered to be variable 1.

Summary

e In the first stage of the algorithm, to calcul@e) usingA;; as pivot, we:

— copy the first row ofA into A(?;

— zero the entries in the first column Af2 below the diagonal; and
— explicitly calculate the entrie&éﬁ) forl</<n,1<k<nusing
2
Aék) = Ak — LA

e We callA;4 thestandard pivot.



5.3.2.2 Second stage

Pivoting

e In the second stage of the algorithm, we now chdd$® to zero the

second column oA® below the diagonal:

M2 —

(1
0

0
1

: —Lgo O

0

—Ln2 0

e WherelL,, = Ag)/Ag‘g,f =3,...,N.

—L3 1

0

(5.9)



Pivoting, continued
o LetA® = MOMDBA =MD AD:-

2)

_All A(122) A(13
3 0 Ay A%;?)
A®—1 0 o Asy -

Aln |
A2

A |

0

IR E
AY = AD LA 2 < k<n,
1 O
0 1
[M(Z)]_lz Ls2 1
i lgp O 1 -
0 L;12 0

@
Az |

(5.10)



Error analysis

e Asin Sections.3.2.1 we can interpret round-off errors in the calculation
of A®) in terms of a perturbation introduced im¢?, which we can, in
turn, interpret in terms of a perturbation in the originatmaA.

Permuting rows and columns

e The construction may again failﬁgzz) = 0.
e Again, full, partial, or diagonal pivoting can be used ifithés a suitable
non-zero pivoty for some 2< /¢ <nand 2<k <n.



Summary

e At the second stage of the algorithm, to calculaf@ usingA(zzz) as pivot,
we:
— copy the first two rows oA into A®);
— zero the entries in the first two columnsAif) below the diagonal; and

— explicitly calculate the entrie&éi) for2</<n,2<k<nusing
3 2 2
A = A Lot

o We caIIA(ZZZ) the standard pivot.



5.3.2.3 Subsequent stages
Pivot

v gLy = AY/AY,
ves ks ALY = Al LA, (5.11)
Error analysis

e At each stage, errors ifi*1) can be interpreted in terms of a

perturbation inAU), which can be interpreted in terms of a perturbation in
the original matrixA.



Summary
e At stagej of the algorithm, to calculatat+1) usingAﬂ) as pivot, we:

— copy the firstj rows of A into AUFY;
— zero the entries in the firgtcolumns ofAU+1D below the diagonal; and

— explicitly calculate the entrieééijfl) forj <f<n,j <k<nusing

o . |
RS

o We caIIAE}) the standard pivot.

e Again, if AlV

columns ofAll) can be reordered to place a suitable non-zero @rﬁﬂgl
wherej </<nandj <k<n,inthejj place.

= 0 or if it is small in magnitude, then the rows and/or



5.3.2.4 Last stage

[ A1 A122 A(123; A(ln_
0 AZ A - A
U=A"=MO-DMO-2..MBA=| 0 0 AJ ... AD

0 0 - 0 AD
1 0 oo 0
L= me-D. gyt Ll 1 ;
_Lnl I—n,n—l 1_




5.3.2.5 Example




5.3.2.6 Singular matrices

e Factorization can sometimes be performed on singular oestri
e However, if factorization fails then (under the assumptbmfinite
precision calculations) the matrix is singular.



5.3.3 Computational effort
e At the j-th stage, we calculate:

— the(n— j) entries ofL that are in itsj-th column and lying below the
diagonal,
— the (n— j)? values ofAli*+Y that are in the lower right of the matrix.
e The total effort therefore is:

Z(n—j) = %n(n—l) divisions

(n—j)? = é(Zn—l)n(n—l) multiplications

S (n—j)? = é(Zn— 1)n(n— 1) subtractions
=

e The overall effort folLU factorization is therefore on the order of the
cubeof the number of variables.



5.3.4 Variations
5.3.4.1 Factorization in place

e To implement the.U factorization algorithm, we can start with a copy of
A and apply the pivot operations directly to update the emiridhe copy
of A, thereby transforming it into thieU factors.

e The entries of the lower triangle &fcan be entered into the lower
triangle ofA as they are calculated, while the entries of the diagonal and
upper triangle otJ can be entered into the diagonal and upper triangle of
A as they are calculated.



5.3.4.2 Diagonal entries of L and U

e L has ones on its diagonal, while the entries on the diagoralwére the
pivots.

e We can instead factoriz& into two matriced’ andU’ so thatU’ has ones
on its diagonal, while the entries on the diagonal 'oére the pivots.

5.3.4.3 LDU factorization
e Suppose we factoriz&into LU’,
e Let D have diagonal entries equal to the diagonal entrigs’of
e DefineU = DU’
e \We now have a factorization @éinto LDU, whereD is a diagonal matrix
and bothL andU have ones on the diagonal.



5.4 Symmetric coefficient matrix

e If Ais symmetric, we can save approximately half the work in
factorization, so long as we only use diagonal pivots.

e Symmetric systems often arise in circuit applications, asave seen,
and also occur in optimization applications.

e Sometimes, a system that appears at first to be not symmaeaitrioec
made symmetric bgcalingthe rows or columns or re-arranging the rows
or columns.



5.4.1 LU factorization

Lemma 5.1 Suppose that A is symmetric and diagonal pivoting was used
in the first stage of factorization to reorder rows and colwnihhen:

() the first row of A is equal to A times the transpose of the first
column of L, (that is, the entries in the first column of L aiged
into a row), and

(i) the submatrix of & formed by deleting its first row and column
IS symmetric.

Proof The proof involves calculation of the entria&). O



Lemma 5.2 Let2 < j < (n—1) and consider the matrix A formed at the
(j — 1)-th stage of the factorization. Suppose that the submatii o

obtained by deleting its firgtji — 1) rows and(j — 1) columns is
symmetric. Assume that diagonal pivoting is used at thes}dbe of
factorization. Consider the matrix\&D) formed at the j-th stage of

factorization. Then:
(i) the j-th row of AI*Y is equal to Ajj) times the transpose of the
j-th column of L, (that is, the entries in the j-th column of L

arranged into a row), and
(i) the submatrix of AT formed by deleting its first j rows and |

columns is also symmetric.

Proof The proof is analogous to that of Lemrd. O



Corollary 5.3 Suppose that A is symmetric and that diagonal pivoting is
used at each stage of the factorization. Then for eaéhg,j < n, the
submatrix of Al formed by deleting its firgtj — 1) rows and(j — 1)
columns is symmetric. Moreover, at the end of the factadmator each
¢, the/-th row of U is equal to |4 times the transpose of tifeth column
of L.

Proof By induction. Lemmab.1 proves the result fof = 1. Lemma5.2
then proves the induction step.



5.4.2 Example

5.4.2.1 First stage

VTSN
T



5.4.2.2 Second stage

1 00
eMA =10 1 o]
0-21
2 3 4
e AB=MEMBA= |0 11
[o 0 3]
5.4.2.3 Last stage
100
o L=[MD M@ = [g 1 o].
2 21



5.4.3 Computational savings

e The savings in computational effort for the small exampl8action5.4.2
IS modest.

e For a general matrix, calculating only the diagonal and upengle in
the first stage of factorization saves a fraction of the waykaé to:

(n—1)—(n—1)n/2  (n—1)%/2—(n—1)/2
(n—1) - (n—1) ’
n—2
2(n—1)’

~ L for nlarge
N 5 ge.

e Similarly, at each successive stage approximately hahivitr is saved,
so that overall approximately half the computational ¢fferequired
compared to factorizing a non-symmetric matrix.



5.4.4 LDLT and Cholesky factorization

e Suppose a symmetric matrix is factorized ihtd using diagonal pivots at
each stage of the factorization.

e Let D be a diagonal matrix with entries equal to the diagondJ of

e By Corollary5.3 U =DLT.

e That is,A = LDL with the diagonal entries d being the pivots.

e If the entries oD are all positive, leR = D%LT, where the matriD? is
diagonal with each diagonal entry equal to the positive sgju@ot of the
corresponding entry d.

e ThenA = R'Ris called theCholesky factorization of A.

e The matrixRis upper triangular.



5.4.5 Discussion of diagonal pivoting

e In the circuit case study from Sectidnl, the admittance matrix is strictly
diagonally dominant and so the diagonal entries are relgtiarge
compared to the off-diagonal.

e Diagonal pivoting is consequently adequate for the pddrqoroblem in
our case study.

e In other circuit formulations and more generally in otheplagations, this
may not be the case and off-diagonal pivoting becomes nagess



5.4.6 Positive definite coefficient matrix

Lemma 5.4 Suppose that & R"™" is symmetric and can be factorized as
A= LDLT, with D € R™" diagonal and L lower triangular with ones on
the diagonal. Then A is positive definite if and only if all thagonal
entries of D are strictly positive.



Proof

= We first prove tha# being positive definite implies that the diagonal
entries ofD are strictly positive. To prove this, we prove the
contra-positive. So, suppose that there is at least oneuwggntry,D,,,
say, ofD that is not strictly positive. We will exhibit £ 0 such that
xTAx < 0. To find such &, solve the equatioh™ = I, for x. (This is
possible sincé is lower triangular and has ones on its diagonal. We just
perform backwards substitution &r.) Notice thatx £ 0, for else
|, = L™= LT0 = 0, which is a contradiction. Furthermore,

x'Ax = x'LDL'x, by assumption o,
1,'DI,, by definition ofx,
= Dy, on direct calculation
< 0, by supposition

Therefore Ais not positive definite.



< We now prove that the diagonal entriesidbeing strictly positive
implies thatA is positive definite. So, suppose that all the diagonal

entries ofD are strictly positive. Define the matriXZ to be diagonal
with each diagonal entr{/D%Lg equal to the positive square root of the

corresponding diagonal entry Bf That is, [D%Lz = /Dy, VL. Let

X # 0 be given and defing= D3Ltx. We first claim thaty == 0.
For suppose the contrary. That is, supposeyhka0b. Then,

-1
[D%} y = 0. (Notice that the diagonal entries p? are all strictly

-1
positive, so thaD? is invertible.) But therD = [D%} y = L™x. Solving

LTx = 0 by backwards substitution we obtair= 0, a contradiction.
Thereforey # 0.



<« continued Second, we observe that:
x'Ax = X'LDL'x, by assumption o,
— x'LD3D3L"x, by definition ofDZ,
y'y, by definition ofy,
= ||yH§, by definition of ||e||,,
> 0, since the length of a non-zero vector is strictly positive.

That is,A is positive definite d



Theorem 5.5 If A is symmetric and positive definite, then:

(i) Ais invertible,

(i) Ais factorizable as LDL, with D diagonal having strictly
positive diagonal entries and L lower triangular with onesthe
diagonal, and

(i) A~1is also symmetric and positive definite.

O



5.4.7 Indefinite coefficient matrix

ﬂ:[A B].

e Consider:

BT C

e Suppose thah is a square symmetric matrix that is positive semi-definite
or positive definite and th& is a square symmetric matrix that is
negative semi-definite or negative definite.

e The coefficient matrix4 is indefinite; that is, it is neither positive
semi-definite nor negative semi-definite.

e For example:
1 O
4= [0 _1] :

e For a non-singular indefinite matrix there are special psepo
factorization techniques.



5.5 Sparsity techniques
e The non-zero entries in the admittance matrix occur only:

— on the diagonal, and
— at those off-diagonal entries corresponding to resistors,

e SO that the admittance matrix issparse matrix.
e \WWe may also have right-hand side vectbithat only have a few non-zero
entries.



5.5.1 Sparse storage
5.5.1.1 Sparse matrices
e Store onlyvaluesandlocationsof the non-zero entries in the matrix.

120
2130
A=lo314 (5.12)
5041
location|| 1| 2|4 |end
row 1 value[ 1[2]5
Y location|| 1| 2|3 |end
Lrow 2 value| 213
Y location|| 2| 3|4 | end
[row 3 value|3[1| 4
Y locationT 113 T2 Tend Fig. 5.1. Sparse matrix
row 4 value 51211 storage by rows of the

matrix (5.12).



5.5.1.2 Sparse vectors

e Sparse vectorscan be stored as a list of pairs of numbers representing the
locations and values of the non-zero entries of the vector.

e For example, consider the change in the circuit case studgctiond
illustrated in Figured.2, which is repeated for reference in Figlr

e In this circuit, the current injected at node 2 changedlpy

| I
=
\&/

Fig. 5.2. The ladder
circuit of Figure 4.2
showing a changej,,
in the current injected at
node’ = 2.




Sparse vectors, continued

e Suppose that the value of the change in the current sourcAlwas1.
e Then, we could define a vectab € R* that represents the changes at all
nodes as specified by:

(5.13)

ool N

N

location end

value

Fig. 5.3. Sparse storage
of the vector $.13.

[EEN

5.5.1.3 Implementation
e A linked list of records can be easily modified by changinggbaters.



5.5.2 Forwards and backwards substitution
5.5.2.1 Sparse matrices
e Forward substitution to solvey = b:

1 /-1
Yo = » by — z Loy

= b= 5 Lk (5.14)
k</?

Lo # 0
Yk #0

e To calculatey,, we first initializey, = by.
e For each non-zero entlyy, k < ¢, in row ¢, if y, #~ 0, we calculatd . yx
and subtract it from the current value\of

5.5.2.2 Sparse vectors

e If b=1,then we only need perforn®d(14) for £ = n sincey, = 0 for
Z<n.



5.5.3 Factorization

5.5.3.1 Fill-ins
120
2130
A=1031 4|
5041
e \We can represent the zeros and non-zerdswith the following
diagram:
o O @)
O O O
o O O
O o O




Fill-ins, continued
e Similarly, we can represent the zeros and non-zerdsvath:

(@)
(@)

® O O

O]
(@) o O

e Whereo ande both represent non-zeros:

o corresponds to an entry that was non-zerd,iwhile
e corresponds to an entry that was zerd\in

e We refer to the latter entries, indicated by bulletasfill-ins because
they correspond to a non-zero entryLithat was created at a position of a
zero inA.



5.5.3.2 Choosing pivots to minimize fill-ins

e Fill-ins necessitate later calculations.
e We seek an ordering of the rows and columns of the matrix that
minimizes the number of fill-ins during factorization.

Heuristic criteria

e Itis in general very difficult to find the optimal ordering tammize the
total number of fill-ins created during the complete facation.

e Several heuristics available to approximately minimizertamber of
fill-ins created.

e Choose the pivot at stageso as to minimize the number of fill-ins
created at stagg ignoring the effect of this decision on the number of
fill-ins created at later stages.



Number of fill-ins with standard pivot
e We have the following upper bound on the number of fill-ins:

Lemma 5.6 Suppose that & R"™" is symmetric. Let j) be the number

of fill-ins created at stage j of factorization usiné}%as pivot. Then
N(j) <N(j), where:

N(j)
O

[(the number of non-zero entries in the j-th row &P Aminus 12,

e The upper boundll(j) is very easy to evaluate and represents the worst
possible case of creation of fill-ins where every non-zetoyan the j-th

row of Al) creates a fill-in for every one of the non-zero elements in the
j-th column ofAl)) below the diagonal that must be explicitly annihilated.
e That is, it ignores the entries that are already non-zesdin



Number of fill-ins with other pivots

e DefineN(¢) to be the number of fill-ins created at stajgié we pivot on
the entryA()

e Again, we can approximate(¢) by ignoring the entries that are already
non-zero inAl) to obtain the upper bourld(¢).

e N(/) is equal to the square of one less than the number of non-néiese
in the ¢-th row of A,

Application of heuristic

e \We choose to pivot on the en gé) that minimizesN(¢), which will also
approximately minimizeéN(¢).

e That is, we pick the row of Al), wherej < ¢ < n, that has the least
number of non-zero entries.



5.5.3.3 Computational effort

e The computational effort for factorization is difficult talculate exactly
because it depends on the total number of fill-ins.

e However, the effort for factorization is typically much gthan cubic in
the number of variables.

e In practice, elapsed computation time sometimes grows sligiitly
faster tharlinearly in the number of variables.

e Solution time depends strongly on the number of non-zemesnn theA
matrix.

e A very large, but sparse, system can be faster to solve tharakhdense
system having more non-zeros than the sparse system.

5.5.3.4 Other criteria for pivot selection

e We should try to avoid small pivots.

e This presents difficulties for owU factorization algorithm for sparse
matrices, because we would like to know the order of the piabiead of
time so that we can create the appropriate fill-ins in thedthkst
representation of the matrix.



5.5.4 Special types of sparse matrices
5.5.4.1 Banded matrices and matrices with regular struetur

e A banded matrix has zeros everywhere except on the diagonal and on
entries that are close to the diagonal.

e A tri-diagonal matrix is a banded matrix that has non-zero entries only
on the diagonal and adjacent to the diagonal.

e There are special factorization algorithms that have besrldped for
these types of matrices.



5.5.4.2 Block pivoting and sparsity
e Consider factorization of the block matrix:

- [y
MY = :—CIA_l ?_’
A% = :—CIA_l c|): [é g]’
- _é D—C?AlB]' (5.15)



Block pivoting and sparsity, continued
e The pre-multiplication matrixM () was obtained by “pretending” that the

matrix:
A B
a=1e 5]

e Was a 2< 2 matrix and pivoting on the block.
e The first block column of_ in the block L U factorization of

A= [é g] IS given bylcl\—l] and the first block row ofll is given by

[A B].
e \We say that we havpivoted on the blockA.
¢ \We have that:

4 = L4,

B | 0] [A B
— |cCA11||0 D-CAlB|"



Block pivoting and sparsity, continued

e If the sparsity pattern of the system is such that non-zengesroccur in
blocks, then it can be more efficient to store the matrix asaasep
collection of blocks.

e The “entries” of the coefficient matrix will therefore costof blocks and
block pivoting can be used.

e For example, Figuré.4 shows the storage of such a matrix.

e Asin Figure5.l, the matrix is stored by “rows;” however, in this case the
rows are actually pairs of rows in the matrix and the entrre2x 2
blocks.



Block pivoting and sparsity, continued

location 1 2 4 end
row 1|—> 1 2 2 3 56
value| |5 41114 5/[|7 8
location 1 2 3 end
[row 2+ 2 3|1 2]]|]|3 4
value| | 4 5113 4| |5 6
location 2 3 4 end
[row 3 34]|[1 2][[4 5
value| | 5 gl | (3 4| ||6 7
location 1 3 4 end Fig. 5.4. Stor-
[row 4}~ | 56]|[4 5[][1 2 age by block
valuel 12 gl lle 71113 4 rows for a block
matrix.




5.6 Changes
5.6.1 Sensitivity
5.6.1.1 Analysis

e \We now generalize to the case where the coefficient matrixightthand
sides are functions of a paramefee R>.

e Thatis,A:R°— R™"Mandb: R®— R" are matrix and vector valued
functions ofy, respectively.

e We assume that we have already found x** € R" that satisfied
A(0)x = Db(0).



Theorem 5.7 Suppose that AR® — R™" and b: R® — R" are partially
differentiable with continuous partial derivatives an@ti(0) is
non-singular. Then, there exists a function R® — R" such that:

e for x in a neighborhood o), the function X satisfies the linear
simultaneous equations R)x*(x) = b(x), and

e the function X is partially differentiable in the neighborhood with
partial derivative with respect tg; at x = 0 given by:

ox* L -1 @ _a_A ok
SO =0 2O -gr x|, (516)

where x* € R" satisfies the base-case linear simultaneous equations
A(0)x** = b(0).



Proof The matrixA(X) is invertible for ally in a neighborhood 0.
Consequently, there is a well-defined solutionrAgg)x = b(x) for all X

in this neighborhood and for each suckve can define the value of
X*(X) to be this solution. That is, for aj within a neighborhood o we
have thatA(x)x*(x) = b(X). (SinceA(0) is non-singular, the solution is
unique and we have that(0) = x**.)

That is,x*(X) = [A(X)] *b(x) for all X in this neighborhood. The inverse
[A(X)]* is partially differentiable with respect o in the
neighborhood. Moreover, the partial derivative is conbunst Therefore,
X*(X), being the product of partially differentiable functiongtw
continuous partial derivatives, is also partially diffietiable with respect
to X in the neighborhood.

Totally differentiatingA(x)x*(x) = b(x) with respect tgj, evaluating at
X = 0, and re-arranging yield$(16). O



5.6.1.2 Discussion

e If we have already factorized the base-case coefficientixnatd)
then 6.16 shows that the sensitivity of with respect to variation i
can be calculated with one additionag forwardAs and backsvard
substitution using the right-hand sigﬁ(O) —a—X_(O)x**.
] ]
e Finding the partial derivative of all entries »f with respect to all entries
of x € R® requiress forwards and backwards substitutions.

e Each forwards and backwards substitution provides a Mtysig%(O).
j

e Since the base-case solutior in Theoremb.7is equal tax*(0), we will
from now on abuse notation somewhat and usually wit®r the
base-case solution amtsofor the function that represents the
dependence of the solution gn



5.6.1.3 Direct sensitivity analysis

e A single forwards and backwards substitution is requireckiculate the
sensitivity ofx* to an entryx; of x € R®.

Example

(1 2
VXERAX) = |3 4+X],

1

X*(0) = ‘ﬂ .



Example, continued

0 = 2o
01
- 159
200 = 5200,
_ _0]
-9
ob 0A (-1
RO -Hrox0 = | 7]




Circuit case study

e For the ladder circuit in Figurd.3, which is repeated in Figurg5, there
Is an additional conductance 86,3 between nodes 2 and 3.

, 2—@— . .
—¢—{L/Rd—{L/Rd—¢—{1/Rf——

1 1 1 1
C@ E| R E"J @ C@ Fig. 5.5. The  ladder
circuit of Figure 4.3
that has a change in the
. * conductance between

0 nodes/ = 2 andk = 3.




Circuit case study, continued

e The sensitivity of the solution of this circuit with respéctiAGo3 = X,
evaluated af\Go3 = X = 0, is given by the solution of a circuit with
“current injections” (actually having units of voltage)ue to:

O 0 O
550~ 9m65 0% =0~ [0 _1 1 o| ¥
O 0 0O
e Where:
— X* is the base-case solution,
— the current injections do not depend A@»3 SO that%zs(O) =0, and

— the dependence of the admittance ma#ien AG,3 was discussed in
Sectior4.1.3.2

e The solution of the circuit is a vector of “voltages” (actydiaving units
of voltage divided by admittance) that represent the sigits&s with
respect tad\Gos.



5.6.1.4 Adjoint sensitivity

e In this section we will suppose that there is@ective function
f : R" — R that provides the value or payoff of the solutian
e We definef* : R® — R bhy:

VX € R% £5(x) = F(X"(X))-

e \We are interested in calculating the partial derivativd gfagain
assuming that we have a base-case soluiod) corresponding to the

parameter valug =

of*
—~—(0
X ©

0 and also assuming thétis differentiable.
d[t (¢ (X)) g,

dx;
of oX* :
—— (X*(0))==(0), by the chain rule,

8 00 * [0~ Lo 0] .17



Adjoint sensitivity, continued
e Let us defing € R" to be the solution of:

A(0)]"e = Of (x(0)). (5.18)
e Solving for¢ in (5.18 and taking the transpose of the result yields:
of , , _
& = 5 (x(0)[A0)]
of* ob 0A

o (0 = & 50500

e Calculation of the vectot in (5.18 requires the solution of a linear

equation with coefficient matrikA(O)]T.
e After & has been calculated with one forwards and backwards sutiostit
sensitivities off * with respect to all entries ¢f can be evaluated.



Example
VXERZ F(X) = (x1)?+ (%) + 22— 3,
vxe R2 Of (x) = ]

Of () = i‘zl |



Example, continued
e In this case,%.18 becomes:

S = & | 20-Foxo).
— (10 4] .
— _14



Circuit case study

e The linear equation that is solved for adjoint sensitivitalysis
corresponds to a circuit that has entries in its admittanagixthat are
thetransposeof those in the base-case and has entries in its “current
vector” that are defined in terms of the sensitivity of theeakiye
function.

e The circuit is called thadjoint sensitivity circuit .

e One solution of the adjoint sensitivity circuit suffices gansitivities of
an objective function with respect to all parameters ofredée

e In the case of resistive circuits with current sources, thaitance matrix
IS symmetric, so that the resistors in the adjoint circugtthie same as
those in the base-case circuit.

e For some circuits, however, the admittance matrix is notragtnic and
the adjoint circuit has components that are different froose in the
base-case circuit.



5.6.2 Large changes
5.6.2.1 Right-hand side
e \We can easily accommodate large changds @ither by:

() re-solving the equations with the new valuelpbr
(if) solving for the changéx in x to match the chang#b in b.

¢ In the second case, we assume that we have already haveiarsgiut
that satisfie®\x* = b and now we want to findx that satisfies
A(X* 4+ X) = b+ Ab, whereb is the change in the right-hand side.

e \We must solveAAx = Ab.

e The computational effort using forwards and backwardst#ulisn as
described in Sectiof.2is on the order ofn).

e \We saw a case in Secti@n5.2.2where the effort is much smaller than
(n)? if Ab has only a few non-zero entries.

e The solution of the systeix= b is a linear function of the right-hand
side vectom.

e If a sensitivity analysis is carried out with respect to paeters that are
all entries ofb then the sensitivity and large change analysis yield the
same result.



5.6.2.2 Coefficient matrix
e Assuming thaiA has been factorized &®LT, we have:

A+DA = LDLT+2A,
— DL + LL2pAlL YL, sincelL L =1,
— L(DLT+ LAl 'Lh),
collecting the common factor on the left,
— L(D+LtaalL YLt
collecting the common factor on the right.



Coefficient matrix, continued

» Suppose that we can factorizer L ALY " into CBLT with  lower
triangular with ones on its diagonal abddiagonal.
e Then, we would have:

A+M = L(D+L1pALT

e The practicality of this approach depends on being abledinfeze

D+ L-2aAlL Y  using less effort than it takes to factoriae- AA.
e This is not true ifAA is an arbitrary change, but is true for some restricted
forms of AA that are nevertheless extremely useful in applications.



Coefficient matrix, continued
e For example, suppose that:

-V, 0 € R with yandd non-zero, and
— w,u € R"with wandu linearly independent.

e Then, for the particular forms:

M = yww! € R™N which is called aymmetric rank one update and
M = yww! + duu’ € RN, which is called aymmetric rank two
update,

e the computational effort involved is on the order(nj?, which is
considerably less than the effort involved in factorizig AA directly.

5.6.3 New variables and equations

e We can also consider augmenting a system of equations bggddew
variable or a new equation.



5.7 lll-conditioning
5.7.1 Numerical conditioning and condition number
5.7.1.1 Discussion
e In Section5.3we showed that iA is non-singular then we can factorize
it, while if it is singular then at some stage we will find thhéte are no
non-zero pivots.
e \We avoided discussion of the issue of when a coefficient mistri
“nearly” singular in the sense that a small perturbatiormefrnatrix
would make is singular.



5.7.1.2 Example

15
A= [1 o]' (5.19)

e If 0 # 0, then under the assumption of infinite precision arithmete
could reliably factorizeA and solveAx = b exactly for the solutiorx*.

e However, ifd is small in magnitude, thefis “nearly” singular in that
perturbingd to make it equal to zero would makesingular.

e Small relative errors in the specification®fbr b (or in the calculations to
factorizeA or to perform forwards or backwards substitution) lead to
large relative errors in the value of the solution

e That is, the problem of solvingx = b given theA defined in 6.19 is
ill-conditioned according to Definitio@.21



Example, continued

AT = [1?6 —11/6] '

A b
¢ =A0= o5) ()| (529

o Leth— H so that|[b], = /2.

e \We have thak* = [é] and||x*||, = 1.

e We consider, in turn, changesh@and toA assuming infinite precision
calculations.



Right-hand side

e Ax= b+ Ab, with Ab = [é] , so that||Ab||, = [X].

_[o e
o i = | 95| andoc = /),

¢,
150, _ 1y /3,
Il ~ X/°
ol _ x|
bl, V2

e The relative change in the norm of the solution is on the ocofi¢t/d|
times the relative change in the norm of the right-hand side.



Coefficient matrix

o (A+DA)X =D, with AA = [)(() 8] , SO that|| M|, = |X]
1

o X+ = [X/BI,MZ [X%] and ||, = [x/3.

AP
[[x* + &%+

2411, _ Ix
1Al V2

e Again, the relative change in the solution is on the ordef gd| times the
relative change in the coefficient matrix.

~[x/9l,




5.7.1.3 Analysis

e The degree of ill-conditioning is characterized by a meagmown as the
condition number of the matrix.

Definition 5.1 Let ||e|| stand for vector and matrix norms & andR"*"
that are compatible. For example, the matrix nde1 could be the matrix
norm induced by the vector norm. Suppose thatR"*" is non-singular.
Then thecondition number of Ais defined by||Al| |A72||. If Ac R™"is
singular then the condition number is defined todél

Theorem 5.8 Let ||e|| stand for vector and matrix norms @1' and R"*"
that are compatible. Suppose thaeAR"*" is non-singular and k& R".
We consider the relation between solutions of the system B\and
solutions of the perturbed systems-A%+Ab and(A+2M)x =b. We
have the following bounds:

(i) Consider the perturbed system A+ Ab. The solution X+ Ax*
to this perturbed system satisfies:

[1A]|
el

il

=
<1141 Jg



where X is the solution to Ax= b. That is, the relative change in
the solution is bounded by the product of the condition numbe
and the relative change in the right-hand side.

(i) Consider the perturbed systgi+ AA)x = b. The solution
X* + OX* to this system satisfies:

1A¢] OA|
>+ | 1A
where X is the solution to Ax= b. That is, the relative change in

the solution is bounded by the product of the condition numbe
and the relative change in the coefficient matrix.
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Example

e Consider the matrix defined i®.(19 and suppose thatis small.
e If the induced matrix nornfe||, is chosen, then:

|All, ~ V2, and
IAH], ~ 12/8],

e so that the condition number is proportional 1gd.

e According to Theorenb.8, relatively small changes in either the
right-hand sidd or the coefficient matri of the systemAx= b can
potentially produce large relative changes in the solutah the
amplification proportional t¢1/d|.

e By Theoremb.7, we obtain that the norm of the sensitivityjas |1/9|.
e These observations are consistent with the above calonttor the
matrix defined in%.19 since the changes handb were indeed

amplified by|1/d| in the solution.



5.7.2 Scaling and pre-conditioning

e Scaling can sometimes be used effectively to reduce thattmmdumber
of a matrix.
e For example, consider the matrix:

A [315 2] (5.21)
) 1/8 0
A= [—1?6 1]’
X =Alb= [_<b1b/1é§5 N b2] . (5.22)

e If the |||, induced matrix norm is again used, then for smalle have
that:

— [All;~ 1,
- At~ |v2/a

e so that the condition number is again proportiongli®|.



Scaling and pre-conditioning, continued
e By scaling the first equation @x= b by multiplying it by 1/d we obtain

the new system:
10|, |[by/d

e and the coefficient matrix now has a condition number thatsisall
constant that is independent &f

e We still face the issue that the solutidn22) is very dependent on the
value ofd; however, the condition number of the coefficient matrix has
improved.

e |t is important to realize that pre-conditioning will notmeve the
sensitivity of the solution to changes in the originally sified coefficient
matrix A and vectolb.



5.7.3 Matrix factorization
5.7.3.1 LU factorizing ill-conditioned systems
e The condition number of the lower triangular matrix:

L= MO Mm@

o iS:
L L] = e m @7 m

00,

e which is bounded by:

=217 oy 2] HM 1=
L [ Ll B L U |
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LU factorizing ill-conditioned systems, continued
e Similarly, the condition number of the upper triangular mat

U=mM®_ . . mMO-Da
e is bounded by:

2] e ey

e BothMU) and[M(J)] have entries that are proportional to the inverse of
the pivot used at th¢-th stage and their norms will both be
correspondingly large.

e The effect of pre-conditioning bMY). ... .M is to increase the
condition number of the resulting system, which exacesbtite
ill-conditioning of A.

e If Ais ill-conditioned then the resulting systeing= b andUx =y can
be extremely ill-conditioned.



5.7.3.2 LDL for positive definite A

e In the case of a strictly diagonally dominant matrix suchrasur circuit
case study of Sectiof. 1, the largest pivots are on the diagonal and
diagonal pivoting will keep the condition number of the systrelatively
low.

e This favorable circumstance also occursli®i factorization of any
symmetric positive definite matrix.



5.7.3.3 QR
e An alternative factorization involves multiplying by a smpce of

matricesM ) for which HM H — H 1H — 1 so that the condition

number ofL is one and the condltlon numberldfls the same as the
condition number oA.

e The resulting factorization is called tlggR factorization and can be
applied to arm x n matrix A with m > n and having linearly independent
columns to produce a factorizatidn= QRwhereQ € R™M s unitary
andR € R™" is upper triangular.

e That is,Ry = 0 for /¢ > k.

e The main drawbacks &R factorization are that:

— it takes more computational effort th&k) factorization, and
— the matrixQ will not usually be sparse evenAfis sparse.



5.8 Non-square systems
5.8.1 More variables than equations
e Consider the systeix = b whereA € R™" b e R™ andm < n.

5.8.1.1 Inconsistent equations

e A system of equations is calledconsistentif there is no solution.
e This problem will turn out to be an optimization problem ane will
treat it in Sectiorl1.1

5.8.1.2 Consistent equations and the null space

e If the mrows of A arelinearly independentthen there is amx m
sub-matrix ofA with linearly independent columns.



First mcolumns linearly independent

o Letn’ = n—mand partitionAinto [Al A'] whereAll e R™™ and
At e RN

e Similarly, partitionx into [?] wherew € RMandé € R".

e Suppose thadll has linearly independent columns, so tAais
non-singular.

Ax=b & [Al Al] [%)] = b, by definition of[Al AL ] and[%)],

& Alo+AtE=b,
s Alo=b-—AlE,
& w=[Al]"(b-A%),

o Leté = 0andd=[Al] "b.



First mcolumns linearly independent, continued

e Then define:

x>

_@]
E )

[Ag)lb] .

e The vectorxis oneparticular solution to Ax=b.
e The set of all solutions tAx = b is given by{X+ Ax € R"|AM = 0}.

e The set:

N(A) = {&x € R"|AMX = 0},

e is called thenull spaceof A.



First mcolumns linearly independent, continued

e Partition/x into [%20] , whereAw € RMandAs € R" .

AX=0 < [Al AL] [g‘é’] =0,

& Alao+Ata =0,
& Alay=—AtN,
o Moo= Al AL,



First mcolumns linearly independent, continued
N(A) = {&xeR"|AMX= 0},
-1
_ | -A] ALAE] ‘AE c R”’}
i ,
= {ZX|LE e R" ],

where:Z = [[AilAL].

e The columns o form abasisfor the null space oA.

e Every solution ofAx= b is of the formx = [(8] + [A&)] ,

e Where:

= [(8] is a particular solution ofAx= b, and

X
[AAch] € N(A).



First mcolumns linearly independent, continued

Fig. 5.6. Solution  of

linear equations. The
solid line represents the
set of points satisfying
the linear equations.
The null space of the
coefficient matrix is

shown as the dashed
line.




Linearly independent columns unknown

e An analogous factorization to tl@Rfactorization can be used to write
PA=LQ, where now:

P € R™Mis a permutation matrix,

L € R™" is lower triangular, with its first’ columns linearly
independent and its last= n—m' columns zero, and

Q € R™"Mis unitary.

e PartitionL into [LI 0] whereLl € R™™ is lower triangular with itsr/
columns linearly independent.
e If A hasmlinearly independent columns them = m.



Linearly independent columns unknown, continued
e Letn' =n—m andy = Qxand partitiony € R" intoy = [%’] where
w< R andé ¢ R",

AXx=Db PAx= Pb, sinceP is non-singular,

LQx = Pb, by definition ofLQ,
Ly = Pbandy = Qx,

(Ll o] [(g] — Pbandy = Qx,

r ¢t¢¢

i

Ll = Pbandy = [(8] = Qx.

-1
e If M = mthen similar arguments to before show thiat {[LH]O Pb]

satisfiedy = Pband thatx= Q 1y = Q'y satisfiesAx = b.



Linearly independent columns unknown, continued
N(A) = {Bxe R"AMX= 0},

- (o' er),
= {ZM5|8 e R,

e whereZ is the last’ columns ofQ".



5.8.2 More equations than variables
e Consider the systeix = b whereA ¢ R™" b e R™ andm > n.

5.8.2.1 Inconsistent equations

e Inconsistent equationstypically occur ifA is non-square with more
equations than variables.
e We will investigate this type of problem in Sectidd.l

5.8.2.2 Consistent equations

e Forb e R (A), the systenAx = b will have one or more solutions, even if
there are more equations than variables.

e For suchb, we say that the equations arensistent

e There are redundant equations.

5.8.3 The pseudo-inverse

e The preceding discussion can be unified by defining the natidme
pseudo-inversewhich is defined to be the (unique) matAx € R™M
such that the vector= A*b is the vector having the minimum value of
norm||x||, over all vectors that minimiz@Ax— b||,.



5.9 lterative methods

e \ery large, but sparse, systems can be solved effectivefgdigrization.

e However, if the coefficient matrix is extremely large or isxde, then the
factorization approaches become too time consuming.

e An alternative approach involves #grrative algorithm where a
sequence{x(")}§’,°:0 of approximations to the solution &= b are
calculated.



5.10 Summary

¢ In this chapter we have described factorization (and its variants) and
forwards and backward substitution as an efficient appréasblving
systems of linear equations, paying particular attentosytnmetric
systems.

e We considered the selection of pivots and discussed thé@olof
perturbed systems, sparse methods, and the issue of ditmomnng.

e We Dbriefly discussed the solution of non-square systemstarative
techniques.

¢ In later chapters we will need to solve large linear systeapsatedly so
that the algorithms developed in this chapter will be incogped into all
subsequent algorithms.
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