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Stochastic Calculus for Finance

Solutions to Exercises

Chapter 1

Exercise 1.1: Show that for eachn, the random variablesK(1), . . . ,K(n)
are independent.

Solution: SinceK(r) have discrete distributions, the independence of
K(1), . . . ,K(n) means that for each sequenceV1, . . . ,Vn, Vi ∈ {U,D} we
have

P(K(1) = V1,K(2) = V2, . . . ,K(n) = Vn)

= P(K(1) = V1) · . . . · P(K(n) = Vn).

Fix a sequenceV1, . . . ,Vn. Start by splitting the interval [0, 1] into two
intervalsIU , ID of length 1

2, IU = {ω : K(1) = U}, ID = {ω : K(1) = D}.
Repeat the splitting for each interval at each stage. At stage two we have
IU = IUU ∪ IUD, ID = IDU ∪ IDD and the variableK(2) is constant on each
Iαβ. For example,IUD = {ω : K(1) = U,K(2) = D}. Using this notation we
have

{K(1) = V1} = IV1, {K(1) = V1,K(2) = V2} = IV1,V2,

. . . {K(1) = V1, . . . ,K(n) = Vn} = IV1,...,Vn .

The Lebesgue measure ofIV1,...,Vn is 1
2n , so that

P(K(1) = V1, . . . ,K(n) = Vn) =
1
2n

. From the definition ofK(r) follows directlyP(K(1) = V1) · . . .P(K(n) =
Vn) = 1

2n .

Exercise 1.2:Redesign the random variablesK(n) so thatP(K(n) =
U) = p ∈ (0, 1), arbitrary

Solution: Given the probability space (Ω,F , P) = ([0, 1],B([0, 1]),m),
wherem denotes the Lebesgue measure, we will define a sequence of ran-
dom variablesK(n), n = 1, 2, . . ..onΩ.

First split [0, 1] into two subintervals: [0, 1] = IU ∪ ID, whereIU , ID are
disjoint intervals with lengths|IU | = p, |ID| = q, p + q = 1, with IU to the
left on ID.. Now set
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K(1, ω) =

{

U if ω ∈ IU

D if ω ∈ ID

}

.

ClearlyP(K(1) = U) = p, P(K(1) = D) = q. Repeat the procedure sep-
arately onIU andID, splitting each into two subintervals in the proportion
p to q. Then IU = IUU ∪ IUD, ID = IDU ∪ IDD, |IUU | = p2, |IUD | = pq,
|IDU | = qp, |IDD | = q2. Repeating this recursive constructionn times we
obtain intervals of the formIα1,...,αr , with αi eitherU or D, and with length
plqr−l, wherel = #{αi : αi = U}.
Again set

K(r, ω) =

{

U if ω ∈ Iα1,...,αr−1,U

D if ω ∈ Iα1,...,αr−1,D

}

.

If the valueU appearsl times in a sequenceα1, . . . , αr−1, then|Iα1,...,αr−1,U | =
pplqr−1−l. There are

(

r−1
l

)

different sequencesα1, . . . , αr−1 havingU exactly
at l places. Then forAr = {K(r) = U} we find

P(Ar) = P(K(r) = U) = p
r−1
∑

l=0

(

r − 1
l

)

plqr−1−l

= p(p + q)r−1
= p

As a consequence isP(K(r) = D) = q. The proof that the variables
K(1), . . . ,K(n) are independent follows as in Ex. 1.1.

Exercise 1.3:Find the filtration inΩ = [0, 1] generated by the process
X(n, ω) = 2ω1[0,1− 1

n ](ω).

Solution: SinceX(1)(ω) = 0 for allω ∈ [0, 1], we haveFX(1) = {∅, [0, 1]}.
For anyB ⊂ R andα ∈ R, letαB = {αω : ω ∈ B}.
Now for k > 1, B ∈ B(R),

X(k)−1(B) =

{

( 1
2 B) ∩ [0, 1− 1

k ] if 0 < B
( 1

2 B) ∩ [0, 1− 1
k ] ∪ (1− 1

k , 1] if 0 ∈ B.

}

Then HenceFX(k) = {A ∪ E : A ∈ B((0, 1− 1
k ])}, E ∈ {∅, {0} ∪ (1− 1

k , 1]}}.
Suppose 1≤ k ≤ n. If C ∈ FX(k) andC ∈ B((0, 1− 1

k ]) thenC ∈ B((0, 1−
1
n ]) ⊂ FX(n). If C = A∪{0}∪ (1− 1

k , 1], A ∈ B((0, 1− 1
k ]), thenC = (A∪ (1−

1
k , 1−

1
n ])∪{0}∪ (1− 1

n , 1] ∈ FX(n) becauseA∪ (1− 1
k , 1−

1
n ] ∈ B((0, 1− 1

n ]).
In consequenceFX(k) ⊂ FX(n) for all k. This impliesF X

n = FX(n).

Exercise 1.4:Working onΩ = [0, 1] find (by means of concrete formu-
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lae and sketching the graphs) the martingaleE(Y |Fn) whereY(ω) = ω2 and
Fn is generated byX(n, ω) = 2ω1[0,1− 1

n )(ω) (see Exercise 1.3).

Solution: According to Exercise 1.3 the natural filtrationFn of X has
the formFn = F X

n = FX(n), so

Fn = {A ∪ E : A ∈ B((0, 1− 1
n

]), E ∈ {∅, {0} ∪ (1− 1
n
, 1]}}.

Hence the restriction ofE(Y |Fn) to the interval (0, 1− 1
n ] must be aB((0, 1−

1
n ])-measurable variable andE(Y |Fn) = Y on (0, 1 − 1

n ] satisfies Def. 1.9
for A ⊂ (0, 1 − 1

n ]. The restriction ofE(Y |Fn) to the set{0} ∪ (1 − 1
n , 1]

must be measurable with respect to theσ-field {∅, {0} ∪ (1 − 1
n , 1]}. Thus

E(Y |Fn) has to be a constant function:E(Y |Fn) = c, on {0} ∪ (1 − 1
n , 1].

Condition 2 of Def. 1.9 gives
∫

(1− 1
n ,1]

c dP =
∫

(1− 1
n ,1]
ω2dP. It follows that

E(Y |Fn)(ω) = c = 1− 1
n +

1
3n2 for ω ∈ (1− 1

n , 1].

Exercise 1.5:Show that the expectation of a martingale is constant in
time. Find an example showing that constant expectation does not imply
the martingale property.

Solution: Let ζ be the trivialσ-algebra, consisting ofP-null sets and
their complements. For every integrable random variableX,E(X|ζ) = E(X).
If M is a martingale, thenE(M(n + 1)|Fn) = M(n) for all n ≥ 0. Using the
tower property we obtain

E(M(n)) = E(M(n)|ζ) = E(M(n + 1)|Fn)|ζ)
= E(M(n + 1)|ζ) = E(M(n + 1)).

If X(n), n ≥ 0 is any sequence of integrable random variables, then for
the sequencẽX(n) = X(n) − E(X(n)) the propertyE(X̃(n)) = E(X(n) −
E(X(n))) = E(X(n)) − E(X(n)) = 0 holds for alln.

Exercise 1.6:Show that martingale property is preserved under linear
combinations with constant coefficients and adding a constant.

Solution: Let X, Y be martingales with respect to the filtrationFn and
fix α ∈ R. DefineZ = X + Z, W = αX, U = X + α. ThenE(|Z(n)|) =
E(|X(n) + Y(n)|) ≤ E(|X(n)|) + E(|Y(n)|) < +∞, E(|W(n)|) = E(|αX(n)|) =
|α|E(|X(n)|) < +∞. It implies thatZ(n) andW(n) areFn-measurable and
they have finite expectation. Finally the linearity of conditional expectation
givesE(Z(n + 1)|Fn) = E(X(n + 1) + Y(n + 1)|Fn) = E(X(n + 1)|Fn) +
E(Y(n + 1)|Fn) = X(n) + Y(n) = Z(n), E(W(n + 1)|Fn) + E(αX(n + 1)|Fn) =
αE(X(n+ 1)|Fn) = αX(n) = W(n). The processU is the special case of this
Z whenY(n) = α for all n.
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Exercise 1.7:Prove that ifM is a martingale, then form < n,

M(m) = E(M(n)|Fm).

Solution: Using the tower propertyn − m − 1 times we obtain

M(m) = E(M(m + 1)|Fm) = E(E(M(m + 2)|Fm+1)|Fm)

= E(M(m + 2)|Fm) = . . . = E(M(m)|Fm).

Exercise 1.8:Let M be a martingale with respect to the filtration gen-
erated byL(n) (as defined for random walk), and assume for simplicity
M(0) = 0. Show that there exists a predictable processH such thatM(n) =
∑n

i=1 H(i)L(i) (i.e. M(n) =
∑n

i=1 H(i)[Z(i)−Z(i−1)], whereZ(i) =
∑i

j=1 L( j).
(We are justified in calling this result a representation theorem: each mar-
tingale is a discrete stochastic integral).

Solution: Here the crucial point is that the random variablesL(n) have
discrete distributions and the process (M(n))n≥0 is adapted to the filtration
F L

n , which means thatM(n), n ≥ 0 also have discrete distributions and
M(n) is constant on the sets of the partitionP(L1, . . . , Ln). From the for-
mulaM(n) =

∑n
i=1 H(i)L(i) we obtainM(n+1)−M(n) = H(n+1)L(n+1).

SinceL2(k) = 1Ω a.s. for allk ≥ 1, we defineH(n + 1) = [M(n + 1) −
M(n)]L(n for n ≥ 0. To prove that (H(n + 1))n≥0 is a predictable process
we have to verifyM(n + 1) is F L

n -measurable. This is equivalent to the
conditionH(n + 1) is constant on the sets of the partitionP(L1, . . . , Ln).
Write Aα1,...,αk = {ω ∈ Ω : L1(ω) = α1, . . . , Lk(ω) = αk;α j ∈ {−1, 1}}.
ThenP(L1, . . . , Lk) = {Aα1,...,αk ;α j ∈ {−1, 1}} andAα1,...,αk ,−1 ∪ Aα1,...,αk ,1 =

Aα1,...,αk . Moreover,P(Aα1,...,αk ) =
1
2k , because theL j are i.i.d. random vari-

ables. Fixn and a setAα1,...,αk . Next, let α̃0 = M(n)(ω) for ω ∈ Aα1,...,αn ,
α̃−1 = M(n + 1)(ω) for ω ∈ Aα1,...,αn−1, α̃1 = M(n + 1)(ω) for ω ∈ Aα1,...,αn,1.
SinceM is a martingale

∫

Aα1,...,αn

M(n)dP =
∫

Aα1,...,αn

M(n + 1)dP

and therefore ˜α0P(Aα1,...,αn ) = α̃−1P(Aα1,...,αn,−1) + α̃1P(Aα1,...,αn,1). From this
and the relation 2P(Aα1,...,αn) = P(Aα1,...,αn,−1) = P(Aα1,...,αn,1) it follows that
2α̃0 = α̃−1 + α̃1 or, equivalently,−(α̃−1 − α̃0) = α̃1 − α̃0. Using this equality
we verify finally that

H(n + 1)1Aα1,...,αn
= [M(n + 1)− M(n)]L(n + 1)1Aα1,...,αn

= (−1)(α̃−1 − α̃0)1Aα1,...,αn ,−1 + (α̃1 − α̃0)1Aα1,...,αn ,1

= (α̃1 − α̃−1)1Aα1,...,αn
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so thatH(n + 1) is constant onAα1,...,αk .

Exercise 1.9:Show that the processZ2(n), the square of a random walk,
is not a martingale, by checking thatE(Z2(n + 1)|Fn) = Z2(n) + 1.

Solution: Assume, as before, thatL(k), k = 1, . . . is a symmetric ran-
dom walk,L(k) ∈ {−1, 1} and setL(0) = 0. The variables (L(k))k≥0 are
independent andZ(k+1) = Z(k)+L(k), k ≥ 0,Fk = F L

k . ThenE(L(k)) = 0,
E(L2(k)) = 1 for k ≥ 1 and the variablesZ(k), Z(k2) areFk-measurable and
the variablesL(k+1), L2(k+1) are independent ofFk. Using the properties
of conditional expectation we have

E(Z2(n + 1)|Fn) = E((Z(n) + L(n + 1))2|Fn)

= E(Z2(n)|Fn) + 2Z(n)E(L(n + 1)|Fn) + E(L2(n + 1)|Fn)

(linearity, measurability)

= Z2(n) + 2Z(n)E(L(n + 1))+ E(L2(n + 1))

(measurability,independence)

= Z2(n) + 1 for n ≥ 0.

Exercise 1.10:Show that ifX is a submartingale, then its expectations
increase withn:

E(X(0)) ≤ E(X(1)) ≤ E(X(2)) ≤ · · · ,

and if X is a supermartingale, then its expectations decrease asn increases:

E(X(0)) ≥ E(X(1)) ≥ E(X(2)) ≥ · · · .

Solution: SinceX is a submartingale,X(n) ≤ E(X(n + 1)|Fn) for all n.
Taking expectations on both sides of this inequality we obtain

E(X(n)) ≤ E(E(X(n + 1)|Fn)) = E(X(n + 1)) for all n.

For a supermartingale proceed similarly.

Exercise 1.11:Let X(n) be a martingale (submartingale, supermartin-
gale). For a fixedm consider the sequenceX′(k) = X(m + k) − X(m), k ≥ 0
Show thatX′ is a martingale (submartingale, supermartingale) relative to
the filtrationF ′k = Fm+k.

Solution: Let X be a martingale (submartingale, supermartingale). Then
X(m) is Fm+k measurable variable for allm, k. We haveE(X′(k + 1)|F ′k ) =
E(X(m+ k + 1)− X(m)|Fm+k) = E(X(m+ k + 1)|Fm+k)−E(X(m)|Fm+k) = (≥
,≤)X(m + k) − X(m) = X′(k), for all k.
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Exercise 1.12:Prove the Doob decomposition for submartingales from
first principles:

If Y(n) is a submartingale with respect to some filtration, then there ex-
ist, for the same filtration, a martingaleM(n) and a predictable, increasing
processA(n) with M(0) = A(0) = 0 such that

Y(n) = Y(0)+ M(n) + A(n).

This decomposition is unique.

Solution: The processZ(n) = Y(n)−Y(0),n ≥ 0, is a submartingale with
Z(0) = 0. Therefore we may assumeY(0) = 0 without loss of generality.
We prove the theorem with the use the principle of induction.For n = 1,
the decomposition formula would imply the relation

E(Y(1)|F0) = E(M(1)|F0) + E(A(1)|F0).

If this is to hold withM a martingale andA predictable, we must set

A(1) := E(Y(1)|F0) − M(0),

which shows thatA(1) isF0-measurable.
To arrive at the composition formula we now define

M(1) := Y(1)− A(1).

M(1) isF1-measurable becauseY(1) andA(1) are. Moreover,

E(M(1)|F0) = E(Y(1)|F0) − E(A(1)|F0) = E(Y(1)|F0) − A(1) = M(0),

which completes the initial induction step.
Assume now that we have defined anFk-adapted martingaleM(k) and a

predictable, increasing processA(k), k ≤ n such thatA(k) andM(k) satisfy
the decomposition formula forY(k), for all k ≤ n. Once again the decom-
position formula fork = n + 1 gives

E(A(n + 1)|Fn) = E(Y(n + 1)|Fn) − E(M(n + 1)|Fn).

Hence it is necessary to define

A(n + 1) := E(Y(n + 1)|Fn) − M(n). (0.1)

HavingA(n + 1) to conserve the decomposition formula we set

M(n + 1) := Y(n + 1)− A(n + 1). (0.2)
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Now we verify thatM(k), A(k), k ≤ n+1 satisfy the conditions of the theo-
rem. From (0.1) A(n+1) isFn-measurable, becauseM(n) isFn-measurable.
Next from (0.1) and the decomposition formula forn we have

A(n + 1) = E(Y(n + 1)|Fn) − M(n)

= [E(Y(n + 1)|Fn) − Y(n)] + A(n) ≥ A(n)

becauseY is a submartingale. ThenA(k) is an increasing, predictable pro-
cess fork ≤ n + 1.

From (0.2), M(n + 1) is Fn+1-measurable and, sinceA(n + 1) is Fn-
measurable,

E(M(n + 1)|Fn) = E(Y(n + 1)|Fn) − E(A(n + 1)|Fn) = E(Y(n + 1)|Fn) − A(n + 1)

= M(n), by (0.1)).

Thus M(k), k ≤ n + 1 is a martingale. By construction, the processes
M(k), A(k), k ≤ n + 1 satisfy the decomposition formula forY(k) for all
k ≤ n + 1. By the principle of induction we may deduce that the processes
A andM, given by (0.1), (0.2) for all n, satisfy the conditions of the theo-
rem. The uniqueness is proved in the main text.

Exercise 1.13:Let Z(n) be a random walk (see Example 1.2),Z(0) =
0, Z(n) =

∑n
j=1 L( j), L( j) = ±1, and letFn be the filtration generated by

L(n), Fn = σ(L(1), . . . , L(n)). Verify thatZ2(n) is a submartingale and find
the increasing processA in its Doob decomposition.

Solution: From relations (0.1), (0.2) we can give explicit formula for
the compensatorA.

A(k) = E(Y(k)|Fk−1) − M(k − 1)

= E(Y(k)|Fk−1) − Y(k − 1)+ A(k − 1).

HenceA(k) − A(k − 1) = E(Y(k) − Y(k − 1)|Fk−1). Adding these equalities
on both sides we obtain

A(n) =
n

∑

k=1

E(Y(k) − Y(k − 1)|Fk−1), for n ≥ 1. (0.3)

By Exercise 1.9,E(Z2(n + 1)|Fn) = Z2(n) + 1 ≥ Z2(n) whenZ(0) = 0,
i.e., Z2 is a submartingale. Next using the formula (0.3) given in Exercise
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1.12 we obtain

A(n) =
n

∑

k=1

E(Z2(k) − Z2(k − 1)|Fk−1)

=

n
∑

k=1

[(Z2(k − 1)+ 1)− Z2(k − 1)] = n

for n ≥ 1.

Exercise 1.14:Using the Doob decomposition, show that ifY is a square-
integrable submartingale (resp. supermartingale) andH is predictable with
bounded non-negativeH(n), then the stochastic integral ofH with respect
to Y is also a submartingale (resp. supermartingale).

Solution: Let Y be a submartingale. Then by the Doob decomposition
(Theorem 1.19) there exist unique martingaleM and a predictable, increas-
ing processA, M(0) = A(0) = 0, such thatY(k) = Y(0)+ M(k) + A(k) for
k ≥ 0. HenceY(k) − Y(k − 1) = [M(k) − M(k − 1)] + [A(k) − A(k − 1)].
This relation gives the following representation for the stochastic integral
H with respect toY

X(n + 1) =
n+1
∑

k=1

H(k)[Y(k) − Y(k − 1)]

=

n+1
∑

k=1

H(k)[M(k) − M(k − 1)]

+

n+1
∑

k=1

H(k)[A(k) − A(k − 1)]

= Z(n + 1)+ B(n + 1), n ≥ 0.

By the Theorem 1.15Z(k), k ≥ 1 is a martingale. For the second term we
have

E(B(n + 1)|Fn) =
n+1
∑

k=1

E(H(k)[A(k) − A(k − 1)]|Fn)

=

n+1
∑

k=1

H(k)[A(k) − A(k − 1)]

= B(n) + H(n + 1)[A(n + 1)− A(n)] ≥ B(n)

because by the predictability ofH andA, the random variablesH(k)[A(k)−
A(k − 1)] areFn-measurable fork ≤ n + 1. Also,H(k) ≥ 0, andA(k) is an
increasing process. Taking together the properties ofZ andB we conclude
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thatE(X(n+1)|Fn) = E(Z(n+1)|Fn)+E(B(n+1)|Fn) ≥ Z(n)+B(n) = X(n).
This proves the claim for a submartingale.

If Y is a supermartingale,−Y is the submartingale, so the above proof
applies, which implies that the stochastic integral of a supermartingale is
again a supermartingale.

Exercise 1.15:Let τ be a stopping time relative to the filtrationFn.
Which of the random variablesτ + 1, τ − 1, τ2 is a stopping time?

Solution: α) τ′ = τ+1, yes. Because{τ′ = n} = {τ = n−1} ∈ Fn−1 ⊂ Fn

for n ≥ 1. {τ′ = 0} = ∅ ∈ F0.

β) τ′ = τ−1, no. Because we can only conclude that{τ′ = n} = {τ = n+1} ∈
Fn+1 for n ≥ 0, so this set need not be inFn.

γ) τ′2, yes. Because{ω : τ′2, k ∈ N} = {ω : τ(ω) = k} ∈ Fk ⊂ Fn for n = k2,
k ∈ N. Forn < {k2; k ∈ N}, {ω : τ(ω) = n} = ∅ ∈ Fn.

Exercise 1.16:Show that the constant random variable,τ(ω) = m for all
ω, is a stopping time relative to any filtration.

Solution: {τ = n}=
{

∅ if m , n
Ω if m = n

}

then{τ = n} ∈ Fn for all n ∈ N.

Exercise 1.17:Show that ifτ andν are as in the Proposition, thenτ ∧ ν
is also a stopping time.

Solution: Use the condition (p. 15):g : Ω → N, then{g = n} ∈ Fn for
all n ∈ N ⇔ {g ≤ n} ∈ Fn for all n ∈ N. We have{τ ∧ ν = n} ∈ Fn for all n
⇐⇒ {τ ≤ n} ∪ {ν ≤ n} ∈ Fn for all n.

Exercise 1.18:Deduce the above theorem from Theorem 1.15 by con-
sideringH(k) = 1{τ≥k}. (Let M be a martingale. Ifτ is a stopping time, then
the stopped processMτ is also a martingale.)

Solution: Let M andτ be a martingale and a stopping time for filtration
(Fn)n≥0. TakeY(n) = M(n) − M(0) for n ≥ 0. ThenY is also a martingale
andE(Y(0)) = 0. Now write forn ≥ 1

Yτ(n, ω) = Y(n ∧ τ(ω), ω) = Y(1, ω) + (Y(2, ω) − Y(1, ω) + . . .

+(Y(n ∧ τ(ω), ω) − Y(n ∧ τ(ω) − 1, ω))

=

n
∑

k=1

1{τ≥k}(ω)(Y(k) − Y(k − 1)).

ThusYτ can be written in the formYτ(n) =
∑n

k=1 H(k)(Y(k)−Y(k−1)) where
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H(k) = 1{τ≥k}. The processH is a bounded predictable process because it is
the indicator function of the set{τ ≥ k} = Ω−⋃k−1

m=1{τ = m} ∈ Fk−1. By The-
orem 1.15Yτ is a martingale. This givesE(Yτ(n)) = (Yτ(0)) = E(Y(0)) = 0.
HenceE(Xτ(n)) = E(X(0)) for all n.

Exercise 1.19:Using the Doob decomposition show that a stopped sub-
martingale is a submartingale, (and similarly for a supermartingale). Alter-
natively use the above representation of the stopped process and use the
definition to reach the same conclusions.

Solution: Use the form of the stopped process given in the proof of
Proposition 1.30. LetM andτ be a submartingale (supermartingale) and a
finite stopping time. From the form ofMτ we have

Mτ(n + 1) =
∑

m<n+1

M(m)1τ=m + M(n + 1)1τ≥n+1.

Since each term of the right hand side is integrable variable, Mτ(n + 1) is
also integrable variable. Now we can write

E(Mτ(n + 1)|Fn) =
∑

m<n+1

E(M(m)1τ=m|Fn)

+E(M(n + 1)1τ≥n+1|Fn).

The processesM(m)1τ=m, m < n + 1 and1τ≥n+1 = 1Ω − 1τ≤n areFn-
measurable, then

E(Mτ(n + 1)|Fn) =
∑

m<n+1

M(m)1τ=m + 1τ≥n+1E(M(n + 1)|Fm)

≥ (≤)
∑

m<n

M(m)1τ=m + M(n)1τ=n + 1τ≥n+1M(n)

(M is sub (super) martingale)

=

∑

m<n

M(m)1τ=m + M(n)1τ≥n = Mτ(n) for all n ≥ 0.

Exercise 1.20:Show thatFτ is a sub-σ-field ofF .

Solution: α) Ω ∈ Fτ becauseΩ ∩ {τ = n} = {τ = n} ∈ Fn for all n ≥ 0.
β) Let A belongFτ. It is equivalent to the conditionA∩ {τ = n} ∈ Fn for all
n. Then (Ω \ A) ∩ {τ = n} = {τ = n} − (A ∩ {τ = n}) ∈ Fn for all n, because
Fn areσ-fields. The last condition meansΩ \ A ∈ Fτ.
γ) Let Ak belongFτ for k = 1, 2, . . . . ThenAk ∩ {τ = n} ∈ Fn for all n.
Hence it follows (

⋃∞
k=1 Ak) ∩ {τ = n} = ⋃∞

k=1(Ak ∩ {τ = n}) ∈ Fn for all n.
This means

⋃∞
k=1 Ak ∈ Fτ.
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Exercise 1.21:Show that ifτ, ν are stopping times withτ ≤ ν thenFτ ⊂
Fν.

Solution: Let τ, ν be stopping times such thatτ ≤ ν. Let A ∈ Fτ. Ac-
cording to the definition ofFτ, A ∩ {τ = m} ∈ Fm for m = 0, 1, . . . Since
τ ≤ ν, it holds (

⋃n
m=0{τ = m}) ∩ {ν ≤ n} = {ν ≤ n}. Hence we have

A ∩ {ν ≤ n} = ⋃t
m=0(A ∩ {τ = m}) ∩ {ν ≤ n} ∈ Fn for Fm ⊂ Fn and

{ν ≤ n} ∈ Fn. n was arbitrary, according to the condition (p. 15)A ∈ Fτ.

Exercise 1.22:Any stopping timeτ isFτ-measurable.

Solution: We have to prove{τ ≤ k} ∈ Fτ for eachk = 0, 1, . . . . This is
equivalent to the condition{τ < k} ∩ {τ = n} ∈ Fn for all n, k. We have

B = {τ ≤ k} ∩ {τ = n}=
{

∅ if k < n
{τ = n} if n ≤ k

}

Then B ∈ Fn. As conse-

quence{τ ≤ k} ∈ Fτ.

Exercise 1.23:(Theorem 1.35 for supermartingales). IfM is a super-
martingale andτ, ν are bounded stopping timesτ ≤ ν then

E(M(ν)|Fτ) ≤ M(τ).

Solution: It is enough to prove that
∫

A
E(M(ν)|Fτ)dP =

∫

A
M(ν)dP ≤

∫

A
M(τ)dP

for all A ∈ Fτ. We will prove the equivalent inequality.E(1A(M(ν) −
M(τ))) ≤ 0 for arbitraryA ∈ Fτ. From the proof of Theorem 1.35 we know
that the variable1A(M(ν) − M(τ)) can be written in the form1A(M(ν) −
M(ν)) = Xν(N) where the processX(n) is as follows

X(n) =
n

∑

k=1

H(k)(M(k) − M(k − 1)),

X(0) = 0, H(k) = 1A · 1{τ<k} and N is a constant such thatν ≤ N. Ad-
ditionally H is a bounded and predictable process. Now the assumption
M is a supermartingale implies thatX is also supermartingale Exercise
1.14). Hence it follows by the results of Exercise 1.19 that the stopped
processXν(n) is also supermartingale. But for a supermartingale we have
E(Xν(N)) ≤ E(Xν(0)) = E(X(0)) = 0, which completes the proof.

Exercise 1.24:Suppose that, withM(n) andλ as in the Theorem, (M(n))p
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is integrable for somep > 1. Show that we can improve (1.4) to read

P(max
k≤n

M(k) ≥ λ) ≤ 1
λp

∫

{maxk≤n M(k)≥λ}
Mp(n)dP ≤ 1

λp
E(Mp(n)).

Solution: If p ≥ 1 the functionxp, x ≥ 0 is a convex, nondecreasing
function. AsMp(n) is integrable, Jensen’s inequality (see p.10) and the fact
thatM is a submartingale imply

E(Mp(n + 1)|Fn) ≥ (E(M(n + 1)|Fn))p ≥ Mp(n).

Applying Doob’s maximal inequality (Theorem 1.36) to the event{maxk≤n M(k) ≥
λ} = {maxk≤n Mp ≥ λp} we obtain the result.

Exercise 1.25:Extend the above Lemma toLp for everyp > 1, to con-
clude that for non-negativeY ∈ Lp, and with its relation toX ≥ 0 as stated
in the Lemma, we obtain||X||p ≤ p

p−1 ||Y ||p . (Hint: the proof is similar to

that given for the casep = 2, and utilises the identityp
∫

{z≥x} x
p−1dx = xp.)

Note: The definition of the normed vector spaceLp is not given explic-
itly in the text, but is well-known: one may prove that ifp > 1 the map
X 7−→ (E(|X|p))1/p

= ||X||p is a norm on the vector space of allp-integrable
random variables (i.e. whereE(|X|p) < ∞ ), again with the proviso that
we identify random variables that are a.s. equal. The Schwarz inequality
in L2 then extends to the Hölder inequality:E(|XY |) ≤ ||X||p ||Y ||q when
X ∈ Lp, Y ∈ Lq, 1

p +
1
q = 1.

Proof: The extension of Lemma 1.38 that we require is the following:
Assume thatX, Y are non-negative random variables,Y is in Lp(Ω), p >

1. Suppose that for allx > 0,

xP(X ≥ x) ≤
∫

Ω

1{X≥x}YdP.

ThenX is in Lp(Ω) and

||E(X)||p = (E(Xp))
1
p ≤ p

p − 1
||E(Y)||p .

The proof is similar to that of Lemma 1.38. First consider thecase whenX
is bounded. The following formula is interesting on its own:

E(Xp) =
∫ ∞

0
pxp−1P(X ≥ x)dx, for p > 0.
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To prove it, substitutez = X(ω) in the equalityzp
= p

∫ ∞
0

1{x≤z}(x)xp−1dx,
and we obtain

E(Xp) =
∫

Ω

Xp(ω)dP(ω) =
∫

Ω

p

(∫ ∞

0
1{x≤X(ω)}(x)xp−1dx

)

dP(ω).

By Fubini’s theorem

E(Xp) =
∫ ∞

0
xp−1

(∫

Ω

1{X≥x}(ω)dP(ω)

)

dx =
∫ ∞

0
pxp−1P(X ≥ x)dx.

Our hypothesis and Fubini’s theorem once more give

E(Xp) ≤ p
∫ ∞

0
xp−2

(
∫

Ω

1{X≥x}(ω)Y(ω)dP(ω)

)

dx

= p
∫

Ω

(
∫ ∞

0
1{x<X(ω)}(x)xp−2dx

)

Y(ω)dP(ω)

= p
∫

Ω

(∫ X(ω)

0
xp−2dx

)

Y(ω)dP(ω)

=
p

p − 1

∫

Ω

Xp−1(ω)Y(ω)dP(ω).

for p > 1.
The Hölder inequality withp andq = p

p−1 yields
∫

Ω
Xp−1YdP ≤ (E((Xp−1)

p
p−1 ))

p−1
p (E(Y p))

1
p .

The last two inequalities give||X||pp = E(Xp) ≤ p
p−1 ||X||

p−1
p ||Y ||p. This is

equivalent to our claim forX bounded.
If X is not bounded we can takeXn = X ∧ n. The inclusion{Xn ≤ x} ⊃

{X ≤ x} implies P(Xn ≥ x) ≤ P(X ≥ x) and from the assumptions of the
theorem we obtain the inequalities

xP(Xn ≥ x) ≤ xP(X ≥ x) ≤
∫

1{X≥x}YdP ≤
∫

1{Xn≥x}YdP.

As Xn is bounded this givesE(Xp
n ) ≤ ( p

p−1)p
E(Y p) for all n ≥ 1. The se-

quenceXp
n increases toXp a.s., the monotone convergence theorem implies

E(Xp) ≤ ( p
p−1)p
E(Y p) and also as a consequenceXp ∈ Lp(Ω).

Exercise 1.26:Find the transition probabilities for the binomial tree. Is
it homogeneous?

Solution: From the definition of the binomial tree the behaviour of stock
prices is described by a sequence of random variablesS (n) = S (n− 1)(1+
K(n)), whereK(n, ω) = U1An(ω) + D1[0,1]\An(ω), S (0) given, deterministic.
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As in the Exercise 1.2 we haveP(K(n) = U) = 1 − P(K(n) = D) =
p, p ∈ (0, 1) for n ≥ 1 and the variablesK(n) are independent random
variables. From the definition ofS (n), S (n) = S (0)

∏n
i=1(1 + K(i)). Then

F S
n = σ(S (1), . . . , S (n)) = F K

n = σ(K(1), . . . ,K(n)) and for any Borel
function f : R→ R is

E( f (S (n + 1))|F S
n ) = E( f (S (n)(1+ K(n + 1)))|F K

n )

= E(F( f )(S (n),K(n + 1))|F K
n )

whereF( f )(x, y) = f (x(1+y)). The variableK(n+1) is independent ofF K
n

andS (n) isF K
n measurable, by the Lemma 1.43 we have

E( f (S (n + 1)|F S
n ) = G( f )(S (n))

where

G( f )(x) = E(F( f )(x,K(n + 1)))

= p f (x(1+U)) + (1− p) f (x(1+ D)).

SinceG( f ) is a Borel function, the penultimate formula implies, by def-
inition of conditional expectation, thatE( f (S (n + 1))|F S

n ) = E( f (S (n +
1))|FS (n)). So the process (S (n))n≥0 has the Markov property. Assuming
f = 1B, µn(x, B) = G(1B)(x) for Borel setsB we see that, for every fixedB,
µn(x, B) = p1B(x(1+U)) (1− p)1B(x(1+ B)) is a measurable function and
for every fixedx ∈ R, µn(x, ·) is a probability measure onB(R). We also
have

P(S (n + 1) ∈ B|FS (n)) = E(1B(S (n + 1))|FS (n)) = µn(S (n), B).

Thus theµn are transition probabilities of the Markov process (S (n))n≥0.
This is a homogeneous Markov process, as theµn do not depend onn.

Exercise 1.27:Show that symmetric random walk is homogeneous.

Solution: According to its definition, a symmetric random walk is de-
fined by takingZ(0) and definingZ(n) = Z(n−1)+L(n), where the random
variablesZ(0), L(1), . . . , L(n) are independent for everyn ≥ 1. Moreover,
P(L(n) = 1) = P(L(n) = −1) = 1

2 (see Examples 1.4 and 1.46). Since
Z(n) = Z(0)+

∑n
i=1 L(i), we haveF Z

n = σ(Z(0), L(1), . . . , L(n)).
For any bounded Borel functionf : R → R we have f (Z(n + 1)) =

f (Z(n)+ L(n+ 1)) = F( f )(Z(n), L(n+ 1)) whereF( f )(x, y) = f (x+ y). The
variableL(n + 1) is independent ofF Z

n andZ(n) is FZn-measurable, so by
Lemma 1.43 we obtain

E( f (Z(n + 1))|F Z
n ) = E(F( f )(Z(n), L(n + 1))) = G( f )(Z(n)),
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where

G( f )(x) = E(F( f )(x, L(n + 1))) = E( f (x + L(n + 1))

=
1
2

( f (x + 1)+ f (x − 1)).

There last two relations testify thatG( f ) is a Borel function and that the
equalityE( f (Z(n + 1))|F Z

n ) = E( f (Z(n + 1))|FZ(n)) holds.
Thus (Z(n))n≥0 is a Markov process. Assumingf = 1B, µ(x, B) = 1

21B(x+
1)+ 1B(x − 1) = δx+1(B) + δx−1(B), whereB is a Borel set,x ∈ R we obtain

P(Z(n + 1) ∈ B|FZ(n)) = G(1B)(Z(n)) = µ(Z(n), B).

Again,µ(·, B) is a measurable function for each Borel setB andµ(x, ·) is a
probability measurable for everyx ∈ R, so we conclude thatµ is a transition
probability for the Markov process (Z(n))n≥0. Sinceµ does not depend on
n, this process is homogeneous.

Exercise 1.28:Let (Y(n))n≥0, be a sequence of independent integrable
random variables on (Ω,F , P). Show that the sequenceZ(n) =

∑n
i=0 Y(i) is

a Markov process and calculate the transition probabilities dependent onn.
Find a condition forZ to be homogeneous.

Solution: From the definitionZ(n) =
∑n

i=1 Y(i) follow the relationsF Z
n =

σ(Z(0), . . . , Z(n)) = σ(Y(0), . . . , Y(n)) = F Y
n andZ(n+1) = Z(n)+Y(n+1).

For any bounded Borel functionf : R→ R we have

f (Z(n + 1)) = f (Z(n) + Y(n + 1)) = F( f )(Z(n), Y(n + 1))

whereF( f )(x, y) = f (x+y). The variableZ(n) isF Z
n measurable and by our

assumption (Y(i))i≥0 is a sequence of independent variables. ThusY(n + 1)
is independent ofF Z

n . Now using Lemma 1.43 we obtain

E( f (Z(n + 1))|F Z
n ) = E(F( f )(Z(n), Y(n + 1))|F Z

n )

= Gn( f )(Z(n))

where

Gn( f )(x) = E(F( f )(x, Y(n + 1))) = E( f (x + Y(n + 1)))

=

∫

R

f (x + y)PY(n+1)(dy) for n ≥ 0.

PY(n+1) is the distribution of the random variableY(n + 1). From the form
Gn( f )(x) =

∫

R
f (x + y)PY(n+1)(dy) and the Fubini theorem,Gn( f ) is a mea-

surable function. The equalityE( f (Z(n + 1))|F Z
n ) = Gn( f )(Z(n)) implies
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thatE( f (Z(n + 1))|F Z
n ) isFZ(n) measurable function. Then from the defini-

tion of conditional expectation we haveE( f (Z(n + 1))|FZ (n)) = E( f (Z(n +
1))|FZ(n)) a.e. . So the process (Z(n))n≥0 is a Markov process.

Puttingµn(x, B) = Gn(1B)(x), n ≥ 0, we see that for every Borel setB,
µn(·, B) is a measurable function. Next, denoteS x(y) = x + y. Of courseS x

is a Borel function for everyx. From the definition ofµn we have relations

µn(x, B) =
∫

R

1B(S x(y))PY(n+1)(dy)

=

∫

R

1S −1
x (B)(y)PY(n+1)(dy) = PY(n+1)(S

−1
x (B)).

This shows that for everyx ∈ R, µn(x, ·) are probability measures. Finally

P(Z(n + 1) ∈ B|FZ(n)) = E(1B(Z(n + 1))|FZ(n))

+ G(1B)(Z(n)) = µn(Z(n), B)

n ≥ 0. Collecting together all these properties we conclude that the mea-
suresµn, n ≥ 0, are the transition probabilities of the Markov process
(Z(n))n≥0. From the definition ofµn we see that if the distribution functions
PY(n) of variablesY(n) are different, thenµn are different and the process
Z(n) is not homogeneous. If for alln variablesY(n) have the same distri-
bution function that isPY(n) = PY(0) for all n, thenµn = µ0 for all n and the
processZ(n) is homogeneous.

Exercise 1.29:A Markov chain is homogeneous if and only if for every
pair i, j ∈ S

P(X(n + 1) = j|X(n) = i) = P(X(1) = j|X(0) = i) = pi j (0.4)

for everyn ≥ 0.

Solution: A Markov chainX(n), n ≥ 0, is homogeneous if for every
Borel setB andn ≥ 0 the equationE(1B(X(n + 1))|FX(n)) = µ(X(n), B) is
satisfied, whereµ is a fixed transition probability, not depending onn. In the
discrete case, the variablesX(n), n ≥ 0 take values in a finite set{0, . . . ,N}.
The relation1B(X(n+1)) =

∑

j∈B 1{X(n+1)= j} and additivity of the conditional
expectation allows us to restrict attention to setsB = {i}, i ∈ S . Since
here the conditional expectations are simple functions, constant on the sets
An

i = {X(n) = i}, the condition that the processX(n) be homogeneous is
equivalent to

E(1{X(n+1)= j}|FX(n)) · 1A(n)
i
= µ(i, { j})1A(n)

i
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for everyi, j ∈ S , n ≥ 0. Denotingµ(i, { j}) = pi j we obtain that the last
equalities are equivalent to the formulaeP(X(n + 1) = j|X(n) = i) = pi j for
all i, j ∈ S andn ≥ 0.

Comming back to the financial example (see p.32) based on credit rat-
ings this means that the process of rating of a country is a homogeneous
Markov process if the rating of a country at timen + 1 depends only on its
rating at timen (it close not depend on its previous ratings)and the proba-
bilities pi j of rating changes are the same for all times.

Exercise 1.30:Prove that the transition probabilities of a homogeneous
Markov chain satisfy the so-calledChapman-Kolmogorov equation

pi j(k + l) =
∑

r∈S
pir(k)pr j(l).

Proof: Denote byP̃k the matrix with entriespi j(k) and denote the entries
of thek-th power of the transition matrixPk by p(k)

i j , i, j ∈ S. We now claim

thatPk
= P̃k for all k ≥ 0, or equivalentlyp(k)

ik = pi j(k) for all i, j, k.
To prove our claim we use the induction principle.

Step1. Ifk = 1, thenp(1)
i j = pi j = pi j(1), soP̃ = P.

Step2. The induction hypothesis. Assume that for alll ≤ m, P̃l
= Pl.

Step3. The inductive step. We will prove thatP̃m+1
= Pm+1. We have

pi j(m + 1) = P(X(m + 1) = j|X(0) = i)

=

∑

r∈S
P(X(m) = r|X(0) = i)P(X(m + 1) = j|X(m) = r, X(0) = i)

=

∑

r∈S
pir(m) · P(X(m + 1) = j|X(m) = r, X(0) = i).

The following relations hold on the set{X(m) = r}

P(X(m + 1) = j|X(m) = r, X(0) = i)

= E(1{ j}(X(m + 1))|FX(0),X(m))

= E(E(1{ j}(X(m + 1))|F X
m |FX(0),X(m)) (tower property)

= E(E(1{ j}(X(m + 1))|FX(m)|FX(0),X(m)) (Markov property)

= E(1{ j}(X(m + 1))|FX(m)) (tower property)

= P(X(m + 1) = j|X(m) = r) = pr j

(X is Markov, homogeneous, Exercise 1.29). Utilizing this result we obtain
pi j(m + 1) =

∑

r∈S pir(m)pr j for all i, j. This equality means that̃Pm+1
=
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P̃mP. Hence by the induction assumptionP̃m+1
= Pm. Now by the Induction

PrincipleP̃k
= Pk for all k ≥ 1 and the claim is true.

Now our exercise is trivial. From the equalityPk+l
= PkPl it follows that

P̃k+l
= P̃kP̃l. Writing out the last equation for the entries completes the

proof.
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Chapter 2

Exercise 2.1:Show that scalings other than by the square root lead nowhere
by proving thatX(n) = hαL(n), α ∈ (0, 1

2), implies
∑N

n=1 X(n) → 0 in L2

while for α > 1
2 this sequence goes to infinity in this space.

Solution: SinceL(n) has mean 0 and variance 1 for eachn, we have, by
independence and sinceh = 1

N ,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

X(n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

= Var(hα
N

∑

n=1

L(n)

= h2α
N

∑

n=1

Var(L(n))

= h2αN = h2α−1.

Whenh→ 0, this goes to 0 ifα < 1
2 and to+∞ if α < 1

2 .

Exercise 2.2:Show that Cov(W(s),W(t)) = min(s, t).

Solution: SinceE(W(t)) = 0 andE(W(t)−W(s))2
= t− s for all t ≥ s ≥

0, we have Cov(W(s),W(t)) = E(W(s)W(t)) andt − s = E(W(t)−W(s))2
=

E(W2(t))−2E(W(s)W(t))+E(W2(s)) = t−2E(W(s)W(t))+ s. This equality
implies the formulaE(W(s)W(t)) = s = min(s, t).

Exercise 2.3ConsiderB(t) = W(t) − tW(1) for t ∈ [0, 1] (this pro-
cess is called the Brownian bridge, sinceB(0) = B(1) = 0). Compute
Cov(B(s), B(t)).

Solution: E(B(r)) = E(W(r))− rE(W(s)) = 0 for all r ≥ 0 forE(W(s)) =
0 for all r. Then

Cov(B(s), B(t)) = Cov(B(s), B(t)) = E(W(s) − sW(1))(W(t) − tW(1))

= E(W(s)W(t)) − sE(W(1)W(t)) − tE(W(s)W(1))+ stE(W2(1))

= Cov(W(s),W(t)) − sCov(W(1),W(t)) − tCov(W(s),W(1))+ stE(W2(1))

= min(s, t) − s min(t, 1)− t(s, 1)+ st

=

{

s(1− t) if s ≤ t ≤ 1
t(1− s) if t ≤ s ≤ 1

}

.

Exercise 2.4:Show directly from the definition that ifW is a Wiener
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process, then so are the processes given by−W(t) and 1
c W(c2t) for any

c > 0.

Solution: The process−W(t) obviously satisfies the Definition 2.4. We
consider the processY(t) = 1

c W(c2t), c > 0, t ≥ 0. It is known (see [PF])
that if, for two given random variablesU,V and every continuous bounded
function f : R→ R we haveE( f (U)) = E( f (V)), then the distributionsPU

andPV of U andV are the same. First note thatPY(t) = PW(t) for all t ≥ 0,
since

E( f (Y(t))) =
∫

Ω

f

(

1
c

W(c2t)

)

dP

=

∫

R

f

(

1
c

x

)

1
√

2πc2t
e−

x2

2c2t dx (W has normal distribution)

=

∫

R

f (y)
1
√

2πt
e−

y2

2t dy (change of variable x=cy)

= E( f (W(t))).

(i) We verify the conditions of Definition 2.4. Condition 1 isobvious.
For Condition 2 2 take 0≤ s < t, B ∈ B(R). Then

P((Y(t) − Y(s)) ∈ B) = P

(

1
c

(W(c2t) −W(c2s)) ∈ B

)

= P((W(c2t) −W(c2s)) ∈ g−1
c (B)) (wheregc(x) =

1
c

x)

= P((W(c2t − c2s)) ∈ g−1
c (B)) (Condition 2 forW, the same increments)

= P

((

1
c

W(c2(t − s))

)

∈ B

)

= P(Y(t − s) ∈ B) = P(W(t − s) ∈ B)

= P((W(t) −W(s)) ∈ B).

ThusY(t)−Y(s) andW(t)−W(s) have the same distribution. For the
third condition set 0≤ t1 < . . . < tm. Then 0≤ c2t1 < . . . < c2tm

and the incrementsW(c2t1) − W(c2t0), . . . ,W(c2tm) − W(c2tm−1) are
independent by independence of the increments ofW(t). Hence the
processY(t) has independent increments. The paths ofY are contin-
uous for almost allω because this holds forW.

Exercise 2.5:Apply the above Proposition to solve Exercise 2.4. In other
words, use the following result to give alternative proofs of Exercise 2.4: If
a Gaussian processX hasX(0) = 0, constant expectations, a.s. continuous
paths andCov(X(s), X(t) = min(s, t), then it is a Wiener process.
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Solution: The proof that−W is again a Wiener process is clear, as it
is Gaussian,, a.s. continuous and has the right covariances. For the second
part we prove two auxiliary claims:

1.If X(t), t ≥ 0 is a Gaussian process andb > 0, thenY(t) = X(bt), t ≥ 0
is a Gaussian process.
2. If Y(t), t ≥ 0 is a Gaussian process,c > 0, thenZ(t) = 1

c Y(t), t ≥ 0 is a
Gaussian process.
Proof of 1: Fix 0 ≤ t0 < t1 < . . . < tn. Then the distribution vector of
increments (Y(t1)−Y(t0), . . . , Y(tn)−Y(tn−1)) is the same as the distribution
vector of the increments (X(s1) − X(s0), . . . , X(sn) − X(sn−1)) wheresi =

bti, i = 0, . . . , n. But the last vector is Gaussian becauseX is a Gaussian
process. According to Def. 2.11Y is a Gaussian process.
For 2. we prove the following more general claim:
If U, UT

= (U1, . . . ,Un)T is a Gaussian random vector with the mean
vectorµU and the covariance matrixΣU andA is a nonsingularn × n (real)
matrix, thenV = AU is a Gaussian vector with mean vectorµV = AµU and
covariance matrixΣV = AΣU AT .
To prove this consider the mappingA(u) = Au for u ∈ Rn. Then for every
Borel setB ∈ B(Rn) we have

P(V ∈ B) = P(A ◦ U ∈ B) = P(U ∈ A−1(B)) =
∫

A−1(B)
fU (u)du

where fU is the density distribution function forU, du = (du1, . . . , dun).
Changing the variables,u = A−1v, we obtainP(V ∈ B) =

∫

B
fU(A−1v) det(A−1)dv.

From Definition 2.12 we conclude that

P(V ∈ B) =
∫

B
(2π)−

n
2 (detΣU)−

1
2 exp{(A−1(v − Aµ))T

Σ
−1
U (A−1(v − Aµ))}(detA)−1dv

=

∫

B
(2π)−

n
2 det(AΣU AT )−

1
2 exp{(v − Aµ)T (AΣU AT )−1(v − Aµ)}dv.

This formula shows thatV is a Gaussian vector with mean vectorµV = AµU

and covariance matrixΣV = AΣU AT .
Returning to Point 2 above letV be the vector of increments of the

processZ, VT
= (Z(t1) − Z(t0), . . . , Z(tn) − Z(tn−1)) andU the vector of

increments ofY, YT
= (Y(t1) − Y(t0), ..., Y(tn) − Y(tn−1)). DenoteA =

diag(1c , . . . ,
1
c ), where diag means diagonal matrix. ThenV = AU and A

is a non-singular matrix (c > 0). SinceY was Gaussian, we know thatV is
also a Gaussian vector. The proof of 2. is completed.

Now to solve our Exercise we verify the assumptions of Proposition
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2.13. Our claims 1 and 2 show that the processW̃(t) = 1
c W(c2t), t ≥ 0 is

a Gaussian process becauseW has this property. NextE(W̃(t)) = 0 for all
t becauseE(W(t)) = 0 for eacht. W̃ has continuous paths becauseW has
continuous paths. For the last condition

Cov(W̃(s), W̃(t)) = Cov

(

1
c

W(c2s),
1
c

W(c2t)

)

=
1
c2

(c2s ∧ c2t) = s ∧ t.

By Proposition 2.13W̃ is a Wiener process.

Exercise 2.6:Show that the shifted Wiener process is again a Wiener
process and that the inverted Wiener process satisfies conditions 2,3 of the
definition.

Solution: 1. Shifted process.
Verify the conditions of Definition 2.4 for Wiener process.
1. Wu(0) = W(u) −W(u) = 0.
2. For 0≤ s < t, Wu(t)−Wu(s) = W(u+ t)−W(u+ s). HenceWu(t)−Wu(s)
has normal distribution with mean value 0 and standard deviation

√
t − s.

3. For all m and 0≤ t1 < . . . < tm the incrementsWu(tn+1) − Wu(tn) =
W(u + tn+1) − W(u + tn), n = 1, . . . ,m − 1, are independent because the
increments of Winer processW(u + tn+1) −W(u + tn), n = 1, . . . ,m − 1 are
independent.
4. For almost allω the paths ofW are continuous functions, then also the
paths ofWu are continuous.

2. Inverted process. Consider the processY(t) = tW( 1
t ) for t > 0, Y(0) = 0.

SinceY(t) = 1
c W(c2t) for t > 0, c = 1

t , by the previous ExerciseY(t)
have normal distributionsE(Y(t)) = 0, VarY(t) = t for t > 0. To verify
condition 2 of Def. 2.4, choose 0< s < t. Then 0< 1

t <
1
s andY(t) −

Y(s) = (−s)(W( 1
s )−W( 1

t ))+(t−s)W( 1
t ). Since the incrementsW( 1

t ),W( 1
s )−

W( 1
t ) are independent, Gaussian variables, the variables (t − s)W( 1

t and
(−s)(W( 1

s ) − W( 1
t ) are also independent and Gaussian. Hence their sum

Y(t)− Y(s) also has a Gaussian distribution. NowE(W(r)) = 0 for all r ≥ 0
impliesE(Y(t)−Y(s)) = 0. This lets us calculate the standard deviationσ of
Y(t)−Y(s) as followsσ2

= Var(Y(t)−Y(s)) = Var((−s)(W( 1
s )−W( 1

t ))+(t−
s)W( 1

t )) = s2Var(W( 1
s )−W( 1

t ))+ (t− s)2Var(W( 1
t )) = s2( 1

s −
1
t )+ (t− s)2 1

t =

t − s.
To verify condition 3 of Def. 2.4 take 0< t1 < . . . < tm. It is necessary

to prove that the components of the vector∆Ym, (∆Ym)T
= (Y(t1), Y(t2) −

Y(t1), . . . , Y(tm) − Y(tm−1))T are independent random variables. To obtain
this property we prove that∆Ym has a Gaussian distribution and Cov(Y(s), Y(t)) =
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min(t, s) . These facts give the independence of components of∆Ym (see
proof of Proposition 2.13). It is 0< 1

tm
< 1

tm−1
< . . . < 1

t1
. Hence the compo-

nents of the vector (∆Z̄m)T
= (W( 1

tm
),W( 1

tm−1
) −W( 1

tm
), . . . ,W( 1

t1
) −W( 1

t2
))T

are independent and have normal distributions as increments of a Wiener
process. Then the vector∆Z̄m has a Gaussian distribution. Now it is easy to
calculate the relation∆Ȳm = BA∆Z̄m where the matricesA andB have the
forms

A =





















































t1 · · t1 t1
t2 · · t2 0
· · · 0 0
· · 0 0 0

tm 0 0 0 0





















































,

B =





















































1 0 0
−1 1

· ·
· ·

0 −1 1





















































.

(i)
Since detA = t1 · . . . · tm , 0, detB = 1 , 0, we know by Exercise 2.5,
that∆Ȳm is Gaussian vector. Since the sequence (ti) was arbitrary,
Y(t), t ≥ 0 is a Gaussian process.

The last condition we have to verify Cov(Y(t), Y(s)) = min(t, s). Let
0 < s ≤ t. Then Cov(Y(t), Y(s)) = E(tW( 1

t )sW( 1
s )) = ts min(1

t ,
1
s ) = ts 1

t =

min(s, t). From the proof of Proposition 2.13 the increments of the process
Y(t), t ≥ 0 are independent.

Exercise 2.7:Show thatX(t) =
√

tZ does not satisfy conditions 2,3 of
the definition of the Wiener process.

Solution: Assume 0≤ s < t. Then we haveX(t) − X(s) = (
√

t −
√

s)Z.
HenceE(X(t) − X(s)) = 0 and Var(X(t) − X(s)) = E(X(t) − X(s))2

= (t +
s−2
√

ts). The last equality contradicts Condition 2 in Definition 2.4 of the
Wiener process.

To check condition 3 of Def. 2.4, consider the incrementsX(tk+1)−X(tk),
k = 1, . . . ,m−1, wheretk+1 = (

√
tk +1)2, t1 ≥ 0. Then

√
tk+1−

√
tk = 1 and
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P(X(t2) − X(t1) ≤ 0, . . . , X(tm) − X(tm−1) ≤ 0) = P(Z ≤ 0) =
1
2
,while

m−1
∏

k=1

P(X(tk+1) − X(tk) ≤ 0) = P(Z ≤ 0)m−1
= (

1
2

)m−1.

So Condition 3 of Def. 2.4 is not satisfied.

Exercise 2.8:Prove the last claim - i.e.that ifX, Y have continuous paths
andY is a modification ofX, then these processes are indistinguishable.

Solution: SupposeY is a modification ofX andX andY have continuous
paths. LetT0 = {tk : k = 1, 2, . . .} be a dense, countable subset of the time
setT. We know that the setsAk = {ω; X(tk, ω) = Y(tk, ω)}, k = 1, 2, . . . have
P(Ak) = 1 or, equivalently,P(Ω \ Ak) = 0. Now take the setA =

⋂∞
k=1 Ak.

Since

P(Ω \ A) = P(Ω \
∞
⋂

k=1

Ak) = P(
∞
⋃

k=1

(Ω \ Ak)) ≤
∞
∑

k=1

P(Ω \ Ak) = 0,

we haveP(A) = 1. If ω0 ∈ A, thenω0 ∈ Ak for all k = 1, 2, . . .. This
means thatX(t, ω0) = Y(t, ω0) for all t ∈ T0. SinceX(·, ω0) andY(·, ω0)
are continuous functions andT0 is a dense subset ofT , it follows that
X(t, ω0) = Y(t, ω0) for all t ∈ T . But ω0 was an arbitrary element ofA
andP(A) = 1, so the processesX andY are indistinguishable.

Exercise 2.9:Prove that IfM(t) is a martingale with respect toFt, then

E(M2(t) − M2(s)|Fs) = E([M(t) − M(s)]2|Fs).

and in particular

E(M2(t) − M2(s)) = E([M(t) − M(s)]2).

Solution: The first equality follows from the relations

E([M(t) − M(s)]2|Fs)

= E(M2(t) + M2(s)|Fs) − 2E(M(s)M(t)|Fs) (linearity)

= E(M2(t) + M2(s)|Fs) − 2M(s)E(M(t)|Fs) (M(s) isFs measurable)

= E(M2(t) + M2(s)|Fs) − 2M2(s) (M is a martingale)

= E(M2(t) − M2(s)|Fs).

The second equality follows from the first by the tower property.
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Exercise 2.10:Consider a processX onΩ = [0, 1] with Lebesgue mea-
sure, given byX(0, ω) = 0, and X(t, ω) = 1[0, 1t ](ω) for t > 0. Find the
natural filtrationF X

t for X.

Solution: The definitions of the probability space ([0, 1],B([0, 1]),m),
m-Lebesgue measure, and the processX yield

FX(s) =















{∅, [0, 1]} , for 0 ≤ s ≤ 1

{∅, [0, 1], [0, 1
s ], ( 1

s , 1]} , for s > 1.

This impliesF X
t = σ(

⋃

t≥s≥0FX(s)) = {0, [0, 1]} for 0 ≤ t ≤ 1. In the case
t > 1 all intervals (1s1

, 1
s2

] = ( 1
s1
, 1] ∩ [0, 1

s2
], where 0< s2 ≤ s1 ≤ t, also

belong toF X
t . Hence we must haveB(( 1

t , 1] ⊂ F X
t and then [0, 1

t ] ∈ F
X

t .
These conditions giveF X

t = B(( 1
t , 1]) ∪ B′, whereB′ = {[0, 1] \ A : A ∈

B(( 1
t , 1])}, becauseB(( 1

t , 1]) ∪ B′ is aσ-field.

Exercise 2.11:Find M(t) = E(Z|F X
t ) whereF X

t is constructed in the
previous exercise.

Solution: LetZ be a random function on the probability space ([0, 1],B([0, 1]),m)
such that

∫ 1

0
|Z|dm exists. We will calculate the conditional mean values of

Z with respect to the filtration (F X
t )t≥0 defined in the Exercise 2.10.

From Exercise 2.10 we know that in the caset > 1 every setA ∈ F X
t

either belongs toB(( 1
t , 1]) or it is of the formA = [0, 1

t ] ∪ C whereC ∈
B(( 1

t , 1]). Hence everyF X
t -measurable variable, includingE(Z|F X

t ), must
be a constant function when restricted to the interval [0, 1

t ], while restricted
to (1

t , 1] it is anF (( 1
t , 1])-measurable function. Then from the definition of

conditional mean value
∫

[0, 1t ]
Zdm =

∫

[0, 1t ]
E(Z|F X

t )dm = c 1
t and for every

A ∈ B(( 1
t , 1]) we have

∫

A
Zdm =

∫

A
E(Z|F X

t )dm. The last equality implies
E(Z|F X

t ) = Z on (1
t , 1] Finally

E(Z|F X
t )(ω) =















t
∫ 1

t

0
Zdm , for ω ∈ [0, 1

t ]

Z(ω) , for ω ∈ ( 1
t , 1]

a.e. in the caset > 1. In the caset < 1 E(Z|F X
t ) = E(Z) a.e.

Exercise 2.12:Is Y(t, ω) = tω− 1
2t a martingale (F X

t as above)? Compute
E(Y(t)).

Solution: It costs little to compute the expectation:E(Y(t)) =
∫ 1

0
(tω −

1
2t)dω = 0. If the expectation were not constant, we would conclude that
the process is not a martingale, however, constant expectation is just a nec-
essary condition, so we have to investigate further. The martingale condi-
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tion readsE(Y(t)|F X
s ) = Y(s). Consider 1< s < t. The random variable on

the left isF X
s -measurable, so since [0, 1

s ] is an atom of theσ-field, it has
to be constant on this event. However,Y(s) is not constant (being a linear
function ofω), soY is not a martingale for this filtration.

Exercise 2.13:Prove that for almost all paths of the Wiener processW
we have supt≥0 W(t) = +∞ and inft≥0 W(t) = −∞.

Solution
SetZ = supt≥0 W(t). Exercise 2.4 shows that for everyc > 0 the process

cW( t
c2 ) is also a Wiener process. HencecZ andZ have the same distribution

for all c > 0, which implies thatP(0 < Z < ∞) = 0, and so the distribution
of Z is concentrated on{0,+∞}. It therefore suffices to show thatP(Z =
0) = 0. Now we have

P(Z = 0) ≤ P({W(1) ≤ 0} ∩
⋂

u≥1

{W(u) ≤ 0})

= P({W(1) ≤ 0} ∩ {sup
t≥0

(W(1+ t) −W(1)) = 0})

since the processY(t) = W(1+ t) −W(1) is also a Wiener process, so that
its supremum is almost surely 0 or+∞. But (Y(t))t≥0 and (W(t))t∈[0,1] are
independent, so

P(Z = 0) ≤ P(W(1) ≤ 0)P(sup
t

Y(t) = 0)

= P(W(1) ≤ 0)P(Z = 0),

(asY is a Wiener process, supt≥0 Y(t) has the same distribution asZ) and
so P(Z = 0) = 0. The second claim is now immediate, since−W is also a
Wiener process.

Exercise 2.14:Use Proposition 2.35 to complete the proof that the inver-
sion of a Wiener process is a Wiener process, by verifying path-continuity
at t = 0.

Solution: We have to verify that the process

Y(t) =















tW( 1
t ) , for t > 0

0 , for t = 0

has almost all paths continuous at 0. This follows from Proposition 2.35,
since

tW

(

1
t

)

=
W( 1

t )
1
t

→ 0 a.s. ift → ∞.
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Exercise 2.15:Let (τn)n≥1 be a sequence of stopping times. Show that
supn τn and infn τn are stopping times.

Erratum: The claim for the infimum as stated in the text is false in
general. It requires right-continuity of the filtration, asshown in the proof
below.

Solution: supτn is a stopping time because for allt ≥ 0, {supτn ≤ t} =
⋂

n{τn ≤ t} ∈ Ft as an intersection of sets inσ-fieldFt.

The case of infn τn needs an additional assumption.

Definition. A filtration (Ft)t≤T is called right continuous ifFt+ =
⋂

s>t Fs =

Ft.

We now prove the following auxiliary result (see also lemma 2.48 in the
text).

Claim. If a filtration (Ft)t≤T is right continuous,τ is a stopping time for
(Ft)t≤T if and only if for everyt, {τ < t} ∈ Ft.

Proof. If τ is stopping time, then for everyt andn = 1, . . ., {τ ≤ t − 1
n } ∈

Ft− 1
n
⊂ Ft. Hence{τ < t} = (

⋃∞
n=1{τ ≤ t − 1

n }) ∈ Ft. If {τ < t} ∈ Ft for all t,

then{τ ≤ t} = (
⋂∞

n=1{τ < t + 1
n }) ∈ Ft+ = F .

This allows us to prove the desired result: if (τn)n≥1 is a sequence of stop-
ping times for a right continuous filtration (Ft)t∈T , then infn τn is a stopping
time for (Ft)t∈T

Proof. According to the claimτn are stopping times imply that for every
t andn, {τn < t} ∈ Ft. Hence{infn τn < t} = ⋃

n{τn < t} ∈ Ft for all t,
which, again by virtue of claim, filtration is continuous, testifies, infτn is a
stopping times.

Exercise 2.16:Verify thatFτ is aσ-field whenτ is a stopping time.

Solution 2.16:1. BecauseFt is aσ-field , ∅ ∩ {τ ≤ t} = ∅ ∈ Ft for all t.
Then by the definition ofFτ, ∅ ∈ Fτ
2.If A ∈ Fτ, thenA ∩ {τ ≤ t} ∈ Ft for all tk. Hence(Ω \ A) ∩ {τ ≤ t} = {τ ≤
t} \ (A∩{τ ≤ t}) ∈ Ft (both sets are inFt). Sincet was arbitrary,Ω \A ∈ Fτ.

3. If Ak, k = 1, 2, . . . belong toFτ, thenAk ∩ {τ ≤ t} ∈ Ft for all t. Now
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(
⋃∞

k=1 Ak) ∩ {τ ≤ t} = ⋃∞
k=1(Ak ∩ {τ ≤ t}) ∈ Ft for Ft is aσ-field. Sincet

was arbitrary,
⋃∞

k=1 Ak ∈ Fτ. 1.,2.,3. implyFτ is aσ-field.

Exercise 2.17:Show that ifν ≤ τ thenFν ⊂ Fτ, and thatFν∧τ = Fν∩Fτ.
Solution: If A ∈ Fν thenA ∩ {ν ≤ τ} ∈ Ft for all t. From the assumption

ν ≤ τ it follows that{ν ≤ t} ⊃ {τ ≤ t} and hence{τ ≤ t} = {ν ≤ t} ∩ {τ ≤ t}
for all t. Now A∩{τ ≤ t} = (A∩{ν ≤ t})∩{τ ≤ t} ∈ Ft, asτ is a stopping time
andFt is aσ-field. ThusA ∈ Fτ. For the equalityFν∧τ = Fν ∩Fτ, note that
by the previous result the relationsν∧τ ≤ ν, ν∧τ ≤ τ implyFν∧τ ⊂ Fν∩Fτ.
For the reverse inclusion takeA ∈ Fν ∩ Fτ. henceA ∩ {ν ≤ t} ∈ Ft and
A ∩ {τ ≤ t} ∈ Ft for all t. Since{ν ∧ τ ≤ t} = {ν ≤ t} ∪ {τ ≤ t}, we have
A ∩ {ν ∧ τ ≤ t} = (A ∩ {ν ≤ t}) ∪ (A ∩ {τ ≤ t}) ∈ Ft for all t becauseFt

is aσ-field. A was an arbitrary set, soFν ∩ Fτ ⊂ Fν∧τ and hence the result
follows.

Exercise 2.18:Let W be a Wiener process. Show that the natural filtra-
tion is left-continuous: for eacht ≥ 0 we haveFt = σ(

⋃

s<t Fs). Deduce
that ifνn ր ν, whereνn, ν areF W

t -stopping times, thenσ(
⋃

n≥1F W
νn

) = F W
v. .

Solution: Proof of the first statement:: For anys > 0 theσ-field F W
s

is generated by sets of the formA = {(W(u1),W(u2), ...,W(un)) ∈ B }where
B ∈ B(Rn) and (ui) is a partition of [0, s]. Now fix t > 0. By left-continuity
of the paths ofW we know thatW(t) = lim sm↑t W(sm) a.s., the setA belongs
to σ(

⋃∞
m=1F W

sm
) ⊂ σ(

⋃

s<t F W
s ). So thisσ-field contains the generators of

F W
t , hence containsF W

t . The opposite conclusion is true for any filtration
(Ft)t≥0, sinceFs ⊂ Ft for s < t gives (

⋃

s<t Fs) ⊂ Ft.

Erratum: The second statement should be deleted. The claim holds for
only for quasi-left-continuous filtrations, which involves concepts well be-
yond the scope of this text. (See Dellacherie-Meyer, Probabilities and Po-
tential, Vol2, Theorem 83, p.217.)

Exercise 2.19:Show that ifX(t) is Markov then for any 0≤ t0 < t1 <
· · · < tN ≤ T the sequence (X(tn))n=0,...,N is a discrete time Markov process.

Solution: We have to verify that the discrete process (X(tn)), n = 1, . . . ,N
is a discrete Markov process with respect to the filtration (Ftn ), n = 0, 1, . . . ,N.
Let f be a bounded Borel functionf : R → R. SinceX is a Markov pro-
cess, it follows thatE( f (X(tn+1))|Ftn ) = E( f (X(tn ))|FX(tn)) for all n. But this
means that (X(tn))n is a Markov chain (a discrete-parameter Markov pro-
cess).

Exercise 2.20:Let W be a Wiener process. Show that forx ∈ R, t ≥ 0,
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M(t) = exp{ixW(t) + 1
2 x2t} defines a martingale with respect to the natu-

ral filtration of W. (Recall from [PF] that expectations of complex-valued
random variables are defined via taking the expectations of their real and
imaginary parts separately.)

Solution: Recall thatZ : Ω → C, whereC is the set of complex num-
bers, is a complex-valued random variable ifZ = X1 + iX2 andX1, X2 are
real-valued random variables.Z has mean valueEZ if X1, X2 have mean
values andEZ = EX1 + iEX2. If G is a σ-subfield ofF we also have
E(Z|G) = E(X1|G) + iE(X2|G) when (Z(t))t is a complex valued process
(martingale) ifX1, X2 are real processes (are real martingales for for the
same filtration) andZ(t) = X1(t) + iX2(t).

Now for Exercise 2.20 take 0≤ s < t and denoteF(u, v) = eix(u+v)+ 1
2 x2t

whereu, v ∈ R. Let ReF(u, v) = F1(u, v) and ImF(u, v) = F2(u, v) be
the real and imaginary parts ofF(u, v). Write Y = W(t) −W(s), X = W(s),
F W

s = G. We prove that ((M(t))t is a martingale for (F )t. Using our notation
we can write

E(M(t)|F W
s ) = E(F(W(s),W(t) −W(s))|F W

s )

= E(F1(X, Y)|G) + iE(F2(X, Y)|G).

The variableY is independent of theσ-field G, X is G-measurable and
the mappingsF1, F2 are measurable (continuous) and bounded. So we
have:E(F1(X, Y)|G) = G1(X), E(F2(X, Y)|G) = G2(X) whereG1(u) =
E(F1(u, Y)), G2(u) = E(F2(u, Y)). SettingG = G1 + iG2 we have the for-
mulaE(M(t)|F W

s ) = G(X) whereG(u) = E(F(u, Y)) = E(eix(u+Y)+ 1
2 x2t) =

eixu+ 1
2 x2t
E(eixY). Since the distribution function ofY is the same as that of

W(t − s) andE(eixW(t−s)) is nothing other than the value atx of the char-
acteristic function of anN(0, t − s)-distributed random variable, we obtain
E(eixY) = e−

1
2 (t−s)x2

[PF]. HenceG(u) = eixu+sx2
. Finally, E(M(t)|F W

s ) =
eixW(s)+sx2

= M(s). Since 0≤ s < t were arbitrary (M(t))t is a martingale.
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Exercise 3.1:Prove thatW andW2 are inM2.

Solution: W,W2 are measurable (continuous, adapted) processes. Since
E(W2(t)) = t, E(W4(t)) = 3t2 (see[PF]), by the Fubini theorem we obtain

E

(
∫ T

0
W2(t)dt

)

=

∫ T

0
E(W2(t))dt =

∫ T

0
tdt =

T 2

2
,

E

(∫ T

0
W4(t)dt

)

=

∫ T

0
E(W4(t))dt =

∫ T

0
3t2dt = T 3.

Exercise 3.2:Prove that in generalI( f ) does not depend on a particular
representation off .

Solution: A sequence 0= t0 < t1 < . . . < tn = T is called a partition of
the interval [0, T ]. We will denote this partition by↑ (ti). A partition↑ (uk)
of [0, T ] is a refinement of the partition↑ (ti) if the inclusion{ti} ⊂ {uk}
holds. Letf be a simple process on [0, T ], f ∈ S 2 and let↑ (ti) be a partition
of [0, T ] compatible with f . The latter means thatf can be written in the
form

f (t, ω) = ξ0(ω)1{0}(t) +
n−1
∑

i=1

ξi(ω)1(ti ,ti+1](t),

whereξi is Fti measurable andξi ∈ L2(Ω). Note thatf (ti+1) = ξi for i ≥ 0.
To emphasize the presence of the partition in the definition of the integral
of f we also writeI( f ) = I↑(ti)( f ). If a partition↑ (uk) is a refinement of a
partition↑ (ti) and↑ (ti) is compatible withf , then↑ (uk) is also compatible
with f . This is because for eachi there existsk(i) such thatti = uk(i). Since
f (t) = f (ti+1) = ξi for ti < t ≤ ti+1, it follows that f (uk) = f (ti+1) = ξi
and f (uk) ∈ Fti ⊂ Fuk for all k such thatti = uk(i) < uk ≤ uk(i+1) = ti+1.
Additionally,

ξ01{0}(t) +
p−1
∑

k=0

f (uk+1)1(uk ,uk+1](t)

= ξ01{0}(t) +
n−1
∑

i=0

















∑

k(i)<k≤k(i+1)

ξi1(uk ,uk+1](t)

















= f (t).
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Now for the integral off we have

I↑(uk)( f ) =
p−1
∑

k=0

f (uk+1)(W(uk+1) −W(uk))

=

n−1
∑

i=0

















∑

k(i)<k≤k(i+1)

ξi(W(uk+1) −W(uk))

















=

n−1
∑

i=0

ξi(W(ti+1) −W(ti)) = I↑(ti)( f ).

Returning to our exercise let↑ (ti) and↑ (s j) be partitions on [0, T ] com-
patible with f . We can construct the partition↑ (vk), where{vk} = {ti} ∪ {s j}
and elementsvk are ordered as real numbers. Then the partition↑ (vk) is a
refinement of both partitions↑ (ti) and↑ (s j). By the previous results we
haveI↑(ti)( f ) = I↑(vk)( f ) = I↑(s j)( f ). Thus the Itô integral of a simple process
is independent of the representation of that process.

Exercise 3.3:Give a proof for the general case (i.e., linearity of the
integral for simple functions).

Solution: We prove two implications.
1. If f ∈ S 2, α ∈ R, thenα f ∈ S 2, I(α f ) = αI( f ).
2. If f , g ∈ S 2, then f + g ∈ S 2, I( f + g) = I( f ) + I(g).
Proof 1. If f (t) = ξ01{0}(t) +

∑n−1
i=0 ξi1(ti ,ti+1](t), whereξi ∈ Fti , theαξi ∈ Fti

andI(α f ) =
∑n−1

i=0 αξi(W(ti+1)−W(ti)) = α
∑n−1

i=1 ξi(W(ti+1)−W(ti)) = αI( f ).

Proof 2. We use the notation and the results of Exercise 3.2. Let ↑ (ti) and
↑ (s j) be partitions (of the interval [0, T ]) compatible with processesf and
g respectively. We can construct a partition↑ (vk) which is a refinement of
both↑ (ti) and↑ (s j) (as was shown in Exercise 3.2). Thenf + g ∈ S 2 and
I(t)+ I(g) = I↑(ti)( f )+ I↑(s j)(g) = I↑(vk)( f )+ I↑(vk)(g) = I↑(vk)( f +g) = I( f +g).

Exercise 3.4:Prove that for
∫ b

a
f (t)dW(t), [a, b] ⊂ [0, T ] we have

E[
∫ b

a
f (t)dW(t)] = 0, E[(

∫ b

a
f (t)dW(t))2] = E[

∫ b

a
f 2(t)dt].

Solution: Since forf ∈ S 2 the process1[a, b] · f belongs toS 2, it follows

thatE(
∫ b

a
f dW) = E(

∫ T

0
1[a,b] f dW) (definition) = 0 (Theorem 3.9). Simi-

larly E(
∫ b

a
f dW)2

= E(
∫ T

0
1[a,b] f dW)2 (definition)= E(

∫ T

0
1[a,b] f 2dt)(Theorem

3.10)= E(
∫ b

a
f 2dt).
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Exercise 3.5:Prove that the stochastic integral does not depend on the
choice of the sequencefn approximatingf .

Solution: Assumef ∈ M2 and let (fn) and (gn) be two sequences ap-
proximating f . That is fn, gn ∈ S 2 for all n andE(

∫ T

0
( fn − f )2dt) −−−→

n→∞
0,

E(
∫ T

0
( f − gn)2dt) −−−→

n→∞
0. The last two relations imply, by the inequality

(a + b)2 ≤ 2a2
+ 2b2,

E

(∫ T

0
( fn − gn)

2dt

)

≤ 2E

(∫ T

0
( fn − f )2dt

)

+2E

(
∫ T

0
( f − gn)

2dt

)

−−−→
n→∞

0.

By assumption, the integralsI(gn), I( fn) exist and there exist limn→∞ I( fn)
and limn→∞ I(gn) in L2(Ω).

We want to prove that limn→∞ I( fn) = limn→∞ I(gn). Now

E((I( fn) − I(gn))
2) = E















(∫ T

0
( fn(t) − gn(t)t)dW(t)

)2












(linearity in S 2)

= E

(
∫ T

0
( fn(t) − gn(t))

2dt

)

(isometry inS 2) → 0 asn→ ∞.

That last convergence was shown above. Thus limn→∞ I( fn) = limn→∞ I(gn)
in L2(Ω)-norm.

Exercise 3.6:Show that

∫ t

0
sdW(s) = tW(t) −

∫ t

0
W(s)ds.

Solution: We have to choose an approximating sequence for our inte-
grals and next to calculate the limit of Itô integrals for the approximating
sequence. Denotef (s) = s and takefn(s) =

∑n−1
i=0 1( it

n ,
(i+1)t

n ](s)
it
n for 0 < s ≤ t,

fn(0) = 0. Then fnare simple functions andfn ∈ S 2 (they do not depend on
ω). ( fn) is an approximating sequence forf because| fn(s) − f (s)| ≤ t

n for

all 0 ≤ s ≤ t. This inequality givesE(
∫ t

0
( f (s) − fn(s))2ds) ≤ t2

n2 t → 0 as
n → ∞. Now we calculate limn→∞ I( fn). According to the definition of the
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integral of a simple function

I( fn) =
n−1
∑

i=0

it
n

(

W

(

(i + 1)t
n

)

−W
( it

n

)

)

= tW(t) −
n−1
∑

i=1

t
n

W
( it

n

)

→ tW(t) +
∫ t

0
W(s)ds a.e.

This holds because for almost allω W(·, ω) is continuous function and
∑n−1

i=1
t
n W( it

n ) is a Riemann approximating sum for the integral ofW(·, ω).
Convergence with probability one is not sufficient. We need the conver-
gence inL2(Ω) norm. We verify the Cauchy condition to proveL2(Ω)-norm
convergence of (I( fn)):

E((I( fn) − I( fm))2) = E((I( fn − fm))2) (linearity in S 2)

= E













(
∫ t

0
( fn(s) − fm(s))dW(s)

)2










= E

(
∫ t

0
( fn(s) − fm(s))2ds

)

(Itô isometry).

Since fn → f in L2([0, T ] × Ω) norm, it satisfies the Cauchy condition.
The Itô isometry guarantees that the sequence of integralsalso satisfies the
Cauchy condition inL2(Ω). Then (I( fn))n converges inL2(Ω)-norm. But
the limits of a sequence convergent with probability one andat the same
time convergent inL2(Ω)-norm must be the same. Thus

I( f )(s) = ( lim
n→∞

I( fn))(s) = tW(t) −
∫ t

0
W(s)ds.

Exercise 3.7:Compute the variance of the random variable
∫ T

0
(W(t) −

t)dW(t).

Solution: In order to calculate the variance of a random variable we
need its mean value. Denote byfn an approximating sequence for the pro-
cessf (t) = W(t) − t. From the definition of the Itô integralI( fn)→ I( f ) in
L2(Ω)-norm. We have the inequalities

|E(I( f )) − E(I( fn))| ≤ E(|I( f ) − I( fn)|) ≤ (Schwarz inequality)

E((I( f ) − I( fn))2)→ 0 asn→ ∞.

SinceE(I( fn)) = 0 for all n (Theorem 3.9), it follows thatE(I( f )) = 0. Now
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we calculate

Var(I( f )) = E((I( f ))2) (E(I( f )) = 0) = E

(
∫ T

0
f 2(t)dt

)

(Itô isometry)=
∫ T

0
E(W(t) − t)2dt =

∫ T

0
(E(W2(t)) + t2)dt

=

∫ T

0
(t + t2)dt =

T 2

2
+

T 3

3
.

Exercise 3.8:Prove that iff , g ∈ M2 andα, β are real numbers, then

I(α f + βg) = αI( f ) + βI(g).

Solution: Let ( fn) and (gn), fn, gn ∈ S 2 be approximating sequences for
f andg, respectively and fixα, β ∈ R. This givesα fn → α f , βgn → βg
in L2([0, T ] × Ω)-norm. Hence the sum of these sequences (α fn + βgn)
converges inL2([0, T ] ×Ω)-norm toα f + βg and of courseα fn + βgn ∈ S 2.
So the sequence (α fn + βgn) is an approximating sequence for the process
α f + βg. From the definition of integral follow the relations

I(α fn + βgn)→ I(α f + βg)

and

I(α fn + βgn) = (linearity in S 2)

αI( fn) + βI(gn)→ αI( f ) + βI(g)

in L2(Ω)-norm. Since the limit of a sequence in a normed vector spaceis
determined explicitly, it follows that

αI( f ) + βI(g) = I(α f + βg).

Exercise 3.9:Prove that forf ∈ M2, a < c < b,

∫ c

a
f (s)dW(s) =

∫ b

a
f (s)dW(s) +

∫ c

b
f (s)dW(s).
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Solution: Let a < c < b. Then
∫ c

a
f (s)dW(s) +

∫ b

c
f (s)dW(s) =

∫ T

0
f (s)1[a,c](s)dW(s)

+

∫ T

0
f (s)1[c,b](s)dW(s) =

∫ T

0
( f (s)1[a,c](s) + f (s)1[c,b](s))dW(s)

(linearity)=
∫ T

0
( f (s)1[a,c](s) + f (s)1(c,b](s))dW(s)

=

∫ T

0
f (s)1[a,b](s)dW(s) =

∫ b

a
f (s)dW(s).

Note that a change of value of an integrand at one point has no influence
on the value of the integral. For example, let (fn) be an approximating se-
quence forf ∈ M2 and let 0= t(n)

0 < t(n)
1 < . . . < t(n)

n = T be the partition
for fn. Then

E((I( fn) − I( fn1(0,T ])
2) = E(( f (0)(W(t(n)

1 ) −W(0)))2)

= E(( f 2(0)E(W2(t(n)
1 )|F0)) = E( f 2(0))E(W2(t1))

(W2(t1) independent ofF0) = E( f 2(0))t(n)
1 −−−→n→∞

0.

Exercise 3.10:Show that the processM(t) =
∫ t

0
sin(W(t))dW(t) is a

martingale.

Solution: Let be 0< s < t. We have to prove the equality

E

(
∫ t

0
sin(W(u))dW(u)|Fs

)

=

∫ s

0
sin(W(u))dW(u).

Beginning with the equality
∫ t

0
sin(W(u))dW(u)) =

∫ s

0
sin(W(u))dW(u)

+

∫ t

s
sin(W(u))dW(u) = η + ξ

We see that to solve the problem it is enough to show thatE(η|Fs) = η
andE(ξ|Fs) = 0. The first equality means thatη should be anFs mea-
surable random variable. To prove it let (fn)n, fn ∈ S 2 be an approximat-
ing sequence for the processW on the interval [0, s]. Then (sin(fn))n is an
approximating sequence for sin(W) and of course sin(fn) ∈ S 2. The inte-
gralsηn = I(sin(fn)) converge inL2(Ω) norm toη and they are of the form
ηn =

∑m(n)−1
i=1 η

(n)
i (W(t(n)

i+1) − W(t(n)
i )) wheret(n)

i ≤ s andη(n)
i ∈ Ft(n)

i
⊂ Fs.

Thenηn areFs-measurable variables and as a consequenceη must be an
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Fs measurable variable. For the equalityE(ξ|Fs) = 0, let (gn)n, gn ∈ S 2,
gn = 1[s,t]gn be an approximating sequence for the processW on the in-
terval [s, t]. Then similarly as in the previous caseξn = I(1[s,t] sin(gn))
are of the formξn =

∑l(n)−1
j=1 ξ

(n)
j (W(s(n)

j+1) − W(s(n)
j )) whereξ(n)

j ∈ Fs(n)
j

and

s ≤ s(n)
j ≤ t for all j andn. These conditions and the definition of Wiener

processW adapted to the filtration (Fn) give the variableW(s(n)
j+1) −W(s(n)

j )

is independent of theσ-field Fs(n)
j

for all s(n)
j andn. This property and the

fact thatξ(n)
j ∈ Fs(n)

j
implies that

E(ξn|Fs) =
l(n)−1
∑

j=1

E(ξ(n)
j (W(s(n)

j+1) −W(s(n)
j ))|Fs)

and further

E(ξ(n)
j (W(s(n)

j+1) −W(s(n)
j ))|Fs)

= E(E(ξ(n)
j (W(s(n)

j+1) −W(s(n)
j ))|Fs(n)

j
)|Fs) (tower property)

= E(ξ(n)
j E(W(s(n)

j+1) −W(s(n)
j )|Fs(n)

j
)|Fs)

= E(ξ(n)
j E(W(s(n)

j+1) −W(s(n)
j ))|Fs) (independence)

= E(W(s(n)
j+1) −W(s(n)

j ))E(ξ(n)
j |Fs) = 0

for all j, n becauseE(W(s(n)
j+1) − W(s(n)

j )) = 0. ThusE(ξn|Fs) = 0 for all
n. The convergenceξn → ξ in L2(Ω)-norm impliesE(ξn|Fs) → E(ξ|Fs) in
L2(Ω) (see [PF]). The last resultE((E(ξ|Fs))2) = 0 givesE(ξ|Fs) = 0 almost
everywhere. The proof is completed.

Exercise 3.11:For eacht in [0, T ] compare the mean and variance of the
Itô integral

∫ T

0
W(s)dW(s) with those of the random variable12(W(T )2−T ).

Solution: We haveE(
∫ T

0
W(s)dW(s)) = 0 (Theorem 3.14). As a conse-

quence

Var

(
∫ T

0
W(s)dW(s)

)

= E















(
∫ T

0
W(s)dW(s)

)2












E

(
∫ T

0
W2(s)ds

)

(isometry) =
∫ T

0
E(W2(s))ds =

∫ T

0
sds =

T 2

2
.

For the second random variable we obtain

E

(

1
2

(W2(T ) − T )

)

=
1
2

(

E(W2(T )) − T
)

=
1
2

(T − T ) = 0
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and so

Var

(

1
2

(W2(T ) − T )

)

=
1
4

Var
(

W2(T )
)

=
1
4

(

E((W2(T ))2) − (E(W2(T )))2
)

=
1
4

(

E(W4(T )) − T 2
)

=
1
4

(

3T 2 − T 2
)

=
T 2

2
.

Exercise 3.12:Use the identity 2a(b−a) = (b2−a2)−(b−a)2 and appro-
priate approximating partitions to show from first principles that

∫ T

0
W(s)dW(s) =

1
2(W(T )2 − T ).

Solution: Since the processW belongs toM2, we know that the inte-
gral of W exists and it is enough to calculate the limit of integrals for an
approximatingW sequence (fn)n. We takefn, n = 1, . . . given by the parti-
tionst(n)

i =
iT
n , i = 0, 1, . . . , n−1. So we havefn(t) =

∑n−1
i=0 W(t(n)

i )1(t(n)
i ,t

(n)
i+1](t),

fn(0) = 0, n = 1, 2, . . .. It is easy to verify thatfn → W in L2([0, T ] × Ω)-
norm. Using our hypothesis about limn→∞ I( fn) we see that it is necessary
to prove thatI( fn) =

∑n−1
i=0 W(t(n)

i )(W(t(n)
i+1) − W(t(n)

i )) → 1
2(W2(T ) − T ) in

L2(Ω)-norm. The identity 2a(b − a) = (b2 − a2) − (b − a)2 lets us write the
Itô sum ofI( fn) as follows

I( fn) =
1
2

n−1
∑

i=0

(W2(t(n)
i+1) −W2(t(n)

i )) − 1
2

n−1
∑

i=1

(W(t(n)
i+1) −W(t(n)

i ))2

=
1
2

W2(T ) − 1
2
ηn

whereηn =
∑n−1

i=0 (W(t(n)
i+1)−W(t(n)

i ))2. Then it is sufficient to show thatE(ηn−
T )2→ 0. SinceE((W(t(n)

i+1)−W(t(n)
i ))2) = E(W2(t(n)

i+1−t(n)
i )) (the same distributions)=

E(W2( T
n )) = T

n , we obtainE(ηn) = T . Hence

E(ηn − T )2
= Var(ηn) =

n−1
∑

i=0

Var((W(t(n)
i+1) −W(t(n)

i ))2) (independence)

=

n−1
∑

i=1

Var(W2(t(n)
i+1 − t(n)

i )) (the same distributions)=
n−1
∑

i=0

Var
(

W2
(T

n

))

= n

(

E

(

W4
(T

n

))

−
(

E

(

W2
(T

n

)))2)

= n

(

3
(T

n

)2

−
(T

n

)2)

=
2T 2

n
→ 0

asn→ ∞. The proof is completed.
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Exercise 3.13:Give a direct proof of the conditional Itô isometry (The-
orem 3.20) : if f ∈ M2, [a, b] ⊂ [0, T ], then

E([
∫ b

a
f (s)dW(s)]2|Fa) = E(

∫ b

a
f 2(s)ds|Fa)

following the method used for proving the unconditional Itˆo isometry.

Solution: (Conditional Itô isometry.) The proof has two steps. In step
1. we prove the theorem forf ∈ S 2. In this case, leta = t0 < t1 < . . . <
tn = b be a partition of [a, b] and let f be of the formf (t) = ξ01{a}(t) +
∑n−1

k=0 ξk1(tk ,tk+1](t), where, fork < n, ξk is anFtk -measurable variable. Then
we can calculate similarly as in Theorem 3.10

E















[∫ b

a
f (s)dW(s)

]2

|Fa















= E

































n−1
∑

k=0

ξk(W(tk+1) −W(tk))















2

|Fa



















=

n−1
∑

k=0

E([ξk(W(tk+1) −W(tk))]
2|Fa)

+2
∑

i<k

E([ξiξk(W(ti+1) −W(ti))(W(tk+1) −W(tk))]|Fa) = A + 2B.

ConsiderA.We have

E(ξ2k (W(tk+1) −W(tk))
2)|Fa)

= E(E(ξ2k (W(tk+1) −W(tk))
2|Ftk )|Fa) (tower property)

= E(ξ2k (E[(W(tk+1) −W(tk))
2|Ftk ]|Fa) (ξ2k isFtk -measurable)

= E(ξ2k (E[W(tk+1) −W(tk)]
2)|Fa) (independence)

= E((W(tk+1 − tk))
2)E(ξ2a |Fa) (linearity, the same distribution)

= (tk+1 − tk)E(ξ2k |Fa) = E(ξ2k (tk+1 − tk)|Fa).

This proves that

A =
n−1
∑

k=0

E(ξ2k (tk+1 − tk)|Fa) = E(
n−1
∑

k=0

ξ2k (tk+1 − tk)|Fa)

= E

(
∫ b

a
f 2(t)dt|Fa

)

.
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Now for B we have

E(ξiξk(W(ti+1) −W(ti))(W(tk+1) −W(tk))|Fa)

= E(E[ξiξk(W(ti+1) −W(ti))(W(tk+1) −W(tk))|Ftk ]|Fa)

(tower property)= E(ξiξk(W(ti+1) −W(ti))

·E(W(tk+1) −W(tk)|Ftk )|Fa) (terms fori < k areFtk -measurable)= 0

becauseW(tk+1)−W(tk) is independent of theσ-fieldFk, henceE(W(tk+1)−
W(tk)|Ftk ) = E(W(tk+1) −W(tk)) = 0. Hence alsoB = 0.
Step 2. The general case. Let bef ∈ M2 and let (fn) be a sequence of
approximating processes forf on [a, b]. Then fn ∈ S 2, n = 1, 2, . . .and|| f −
fn||L2([a,b]×Ω) 7−→ 0 asn→ ∞. The last condition implies||I(1[a,b] fn)||L2(Ω) →
0.

Now we will want to utilize the conditional isometry forfn and to take
the limit asn→ ∞. This needs the following general observation.
Observation. Let (Zn) be a sequence of random variables on a probability
space (Ω′,F ′, P′) and letζ be a subσ-field of F ′. If Zn ∈ L1(Ω′), n =
1, 2, . . . andZn → Z in L1(Ω)-norm, thenE(Zn|ζ)→ E(Z|ζ) in L1(Ω)-norm.

Proof. First note thatE(Zn|ζ), E(Z|ζ) belong toL1(Ω).
Now we have

E(|E(Zn |ζ) − E(Z|ζ)|) = E(|E(Zn − Z|ζ)|)
≤ E(E(|Zn − Z||ζ)) = E(|Zn − Z|)→ 0 asn→ ∞ .

To use our Observation we have to verify that [I(1[a,b] fn)]2 → [I(1[a,b] f )]2

and
∫ T

0
(1[a,b] fn)2ds →

∫ T

0
(1[a,b] f )2ds in L1(Ω)-norm. The following rela-

tions hold

E(|[I(1[a,b] fn)]
2 − [I(1[a,b] f )]2|) = E(|I(1[a,b] ( fn − f ))||I(1[a,b] ( fn + f ))|)

≤ (E([I(1[a,b]( fn − f ))]2))
1
2 (E([I(1[a,b]( fn + f ))]2))

1
2 (Schwarz inequality)

= (E(
∫ T

0
1[a,b]( fn − f )2ds))

1
2 (E(

∫ T

0
1[a,b]( fn + f )2ds))

1
2 (isometry)

= || fn − f ||L2([a,b]×Ω)|| fn + f ||L2([a,b]×Ω) → 0

asn → ∞ because the second sequence is bounded. For the second se-
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quence we have similarly

E|
∫ T

0
1[a,b]( f 2

n − f 2)ds| ≤ E(
∫ T

0
|1[a,b]( fn − f )||1[a,b]( fn + f )|ds)

≤ (E(
∫ T

0
1[a,b]( fn − f )2ds))

1
2 (E(

∫ T

0
1[a,b]( fn + f )2ds))

1
2

= || fn − f ||L2([a,b]×Ω)|| fn + f ||L2([a,b]×Ω) → 0 asn→ ∞.

Thus we have by our Observation that

E([I(1[a,b] fn)]2|Fa)→ E([I(1[a,b] f )]2|Fa)

and

E(
∫ T

0
1[a,b] f 2

n ds|Fa)→ E(
∫ T

0
1[a,b] f 2ds|Fa)

in L1(Ω) norm. Hence and from the equality

E([I(1[a,b] fn)]2|Fa) = E(
∫ T

0
1[a,b] f 2

n ds|Fa)

valid for all fn ∈ S 2, we can obtain the final result.

Exercise 3.14:Show
∫ t

0
g(s)ds = 0 for all t ∈ [0, T ] impliesg = 0 almost

surely on [0, T ].

Solution: Denote byg+ andg− the positive and the negative parts of
g. Then g+ ≥ 0, g− ≥ 0 and g+ − g− = g. The assumption aboutg
implies

∫ b

a
g+(s) =

∫ b

a
g−(s) = 0 for all intervals [a, b] ⊂ [0, T ]. Write

ν+(A) =
∫

A
g+(s)ds, ν−(A) =

∫

A
g−(s)ds for A ∈ B([0, T ]). Of courseν−

and ν+ are measures onB([0, T ]) and the properties ofg+ and g− give
ν+([a, b]) = ν−([a, b]) for every interval [a, b]. Since intervals generate the
σ-field B([0, T ]), we must haveν+(A) = ν−(A) for all A ∈ B([0, T ]). Sup-
pose now that the Lebesbue measure of the set{x : g(x) , 0} = {x : g+(x) ,
g−(x)} is positive. Then the measure of the setB = {x : g+(x) > g−(x)} (or
the set{x : g+(x) < g−(x)}) must be also positive. But this conjecture leads
to the conclusion

ν(B) = ν+(B) − ν−(B) =
∫

B
(g+ − g−)ds > 0

which contradicts the assumptionν(A) = 0 for all A ∈ B([0, T ]).
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Chapter 4

Exercise 4.1:Show that for cross-terms all we need is the fact thatW2(t)−t
is a martingale.

Solution: We need to calculateH = E(F′′(W(ti))F′′(W(t j))XiX j) for i <
j, whereXk = [W(tk+1)−W(tk]2− [tk+1− tk]. As in the proof of Theorem 4.5,
(Hurdle 1-Cross terms) we haveH = E(F′′(W(ti))F′′(W(t j))XiE(X j|Ft j )).
So we calculateE(X j|Ft j ). It is possible to write it in the form

E(X j|F j) = E([W2(t j+1) − t j+1]|Ft j ) − 2W(t j)E(W(t j+1)|Ft j )

+W2(t j) + t j (W(t j) isFt j -measurable)

= W2(t j) − t j − 2W2(t j) +W2(t j) + t j = 0

(W2(t) − t,W(t) are martingales).

Hence alsoH = 0.

Exercise 4.2:Verify the convergence claimed in (4.3), using the fact that
quadratic variation ofW is t.

Solution: Actually we have to repeat the calculus done for the quadratic
variation ofW. As in the previous exercise writeXi = (W(ti+1) −W(ti))2 −
(ti+1 − ti), i = 1, . . . , n − 1. SinceE(Xi) = 0 and henceE(

∑n−1
i=0 Xi) = 0, and

sinceXi, i = 1, . . . , n − 1 are independent random variables, we have

n−1
∑

i=0

E({(W(ti+1) −W(ti))
2 − (ti+1 − ti)}2) =

n−1
∑

i=0

EX2
i

=

n−1
∑

i=0

Var(Xi) (E(Xi) = 0) = Var(
n−1
∑

i=0

Xi) (Xi are independent)

= E((
n−1
∑

i=0

Xi)
2) (E(

n−1
∑

i=0

Xi) = 0) = E[((
n−1
∑

i=0

(W(ti+1) −W(ti))
2) − t)]

= E((V2
[0,t](n) − t)2)→ E(([W,W](t) − t)2) = 0

in L2(Ω)-norm, independently of the sequence of partitions with mesh go-
ing to 0 asn→ ∞. (See Proposition 2.2.)

Exercise 4.3:Prove that

τM = inf {t :
∫ t

0
| f (s)|ds ≥ M}

is a stopping time.
Solution: The processt 7→

∫ t

0
| f (s)|ds has continuous paths and we can
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apply the argument given at the beginning of the section provided it is
adapted. For this we have to assume that the processf (t) is adapted and
notice that the integral

∫ t

0
| f (s)|ds, computed pathwise, is the limit of ap-

proximating sums. These sums areFt-measurable and measurability is pre-
served in the limit.

Exercise 4.4:Find a process that is inP2 but not inM2.

Solution: If a process has continuous paths, it is inP2 since the integral
over any finite time interval of a continuous function is finite. We need an
example for which the expectationE

∫ T

0
f 2(s)ds is infinite. Fubini’s theo-

rem implies that it is sufficient to find f such that
∫ T

0
E( f 2(s))ds is infinite.

Going for a simple example, letΩ = [0, 1] andT = 1. The goal will be

achieved ifE( f 2(s)) = 1
s . Now E( f 2(s)) =

∫ 1

0
f 2(s, ω)dω so we need a ran-

dom variable, i.e. a Borel functionX : [0, 1] → R such that
∫ 1

0
X(ω)dω =

1
s . Clearly,X(ω) = 1

s2 1[0,s](ω) does the trick, sof (s, ω) = 1
s 1[0,s](ω) is the

example we are looking for.
Exercise 4.5:Show that the Itô processdX(t) = a(t)dt + b(t)dW(t) has

quadratic variation [X, X](t) =
∫ t

0
b2(s)ds.

Solution: Under the additional assumption that
∫ T

0
b(s)dW(s) is bounded

the result is given by Theorem 3.26. For the general case letτn = min{t :
∫ t

0
b(s)dW(s) ≥ n}, so that, writingM(t) =

∫ t

0
b(s)dW(s), the stopped pro-

cessMτn(t) is bounded (byn).SinceMτn(t) =
∫ T

0
1[0,τn]b(s)dW(s), [Xtn , Xτn ](t) =

∫ t

0
1[0,τn]b2(s)ds→

∫ t

0
b2(s)ds almost surely, becauseτn is localising.

Exercise 4.6:Show that the characteristics of an Itô process are uniquely
defined by the process, i.e. prove thatX = Y impliesaX = aY , bX = bY , by
applying the Itô formula to find the form of (X(t) − Y(t))2.

Solution: LetZ(t) = X(t)−Y(t) and by the Itô formuladZ2(t) = 2Z(t)aZ(t)dt+
2Z(t)bZ(t)dW(t) + b2

Z(t)dt with aZ = aX − aY , bZ = bX − bY . But Z(t) = 0

hence
∫ t

0
b2

Z(s)ds = 0, all t, sobZ = 0. This implies
∫ t

0
aZ(s)ds = 0 for all t

henceaZ(t) = 0 as well.
Exercise 4.7:Suppose that the Itô processdX(t) = a(t)dt + b(t)dW(t) is

positive for allt and find the characteristic of the processesY(t) = 1/X(t),
Z(t) = ln X(t).

Solution: Y(t) = 1
X(t) = F(X(t)), F(x) = 1

x , F
′(x) = − 1

x2 , F′′(x) = 2 1
x3

dY = − 1
X2

adt − 1
X2

bdW(t) +
1
2

1
X3

b2dt,

Z(t) = ln X(t), soZ(t) = F(X(t)) with F(x) = ln x, F′(x) = 1
x , F

′′(x) =
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− 1
x2 and

dZ =
1
X

adt +
1
X

bdW(t) − 1
2

1
X2

b2dt.

Exercise 4.8:Find the characteristics of exp{at + X(t)}, given the form
of the Itô processX.

Solution: Let F(t, x) = exp{at + x} so Ft = aF, Fx = F, Fxx = F and
with Z(t) = exp{at + X(t)}, dX(t) = aX(t)dt + bX(t)dW(t) we have

dZ = aZdt + axZdt + bXZdW(t) +
1
2

b2
XZdt.

Exercise 4.9:Find a version of Corollary 4.32 for the case whereσ is a
deterministic function of time.

Solution: Let M(t) = exp{
∫ t

0
σ(s)dW(s) − 1

2

∫ t

0
σ2(s)ds} = exp{X(t)}

whereX(t) is Itô with aX = −1
2σ

2, bX = σ. SinceX(t) has normal distribu-
tion (σ is deterministic),σM ∈ M2 can be show in the same way as in the
proof of the corollary and (4.16) is clearly satisfied.

Exercise 4.10:Find the characteristics of the processe−rtX(t).
Solution: Let Y(t) = e−rt, aY(t) = −re−rt, bY(t) = 0, dY(t) = −re−rtdt so

integration by parts (Itô product rule, in other words) gives

d[e−rtX(t)] = −re−rtX(t)dt + e−rtdX(t).

Exercise 4.11:Find the form of the processX/Y using Exercise 4.7.
Solution: Write dX(t) = aX(t)dt + bX(t)dW(t), d( 1

Y(t) ) = a1/Y(t)dt +
b1/Y(t)dW(t) with the characteristics ofY given by Exercise 4.7:

a1/Y = −
1

Y2
aY +

1
2

1
Y3

b2
Y ,

b1/Y = −
1

Y2
bY .

All that is left is to plug these into the claim of Theorem 4.36

d(X
1
Y

) = Xd(
1
Y

) +
1
Y

dX + bXb1/Ydt.
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Chapter 5

Exercise 5.1:Find an equation satisfied byX(t) = S (0) exp{µXt + σW(t)}.
Solution: Write the process in (5.3) in the formS (t) = S (0) exp{µS t +

σW(t)} with µS = µX − 1
2σ

2 and (5.2) takes the formdS (t) = (µS +
1
2σ

2)S (t)dt + σS (t)dW(t) so immediately

dX(t) = (µX +
1
2
σ2)X(t)dt + σX(t)dW(t)

Exercise 5.2:Find the equations for the functionst 7→ E(S (t)), t 7→
Var(S (t)).

Solution: We haveE(S (t)) = S (0) exp{µt} = m(t), say, som′(t) = µm(t)
with m(0) = S (0). Next,l Var(S (t)) = E(S (t) − S (0)eµt)2

= S 2(0)e2µt(eσ
2t −

1) = v(t), say and

v′(t) = 2µS 2(0)e2µt(eσ
2t − 1)+ σ2S 2(0)e2µteσ

2t

= [2µ + σ2]v(t) + σ2m2(t).

Exercise 5.3:Show that the linear equation

dS (t) = µ(t)S (t)dt + σ(t)S (t)dW(t)

with continuous deterministic functionsµ(t) andσ(t) has a unique solution

S (t) = S (0) exp{
∫ t

0

(

µ(s) − 1
2
σ2(s)

)

ds +
∫ t

0
σ(s)dW(s)}.

Solution: For uniqueness we can repeat the proof of Proposition 5.3 (or
notice that the coefficients of the equation satisfy the conditions of Theo-
rem 5.8). To see that the process solves the equation, take

F(t, x) = S (0) exp{
∫ t

0

(

µ(s) − 1
2
σ2(s)

)

ds + x},

andS (t) = F(t, X(t)) with X(t) =
∫ t

0
σ(s)dW(s). Now

Ft(t, x) = (µ(t) − 1
2
σ2(t))S (0)F(t, x),

Fx(t, x) = Fxx(t, x) = S (0)F(t, x),

dX(t) = σ(t)dW(t),
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so by the Itô formula we get the result:

dS (t) = (µ − 1
2
σ2)S (0) exp{

∫ t

0

(

µ(s) − 1
2
σ2(s)

)

ds + X(t)}dt

+σS (0) exp{
∫ t

0

(

µ(s) − 1
2
σ2(s)

)

ds + X(t)}dW(t)

+
1
2
σ2S (0) exp{

∫ t

0

(

µ(s) − 1
2
σ2(s)

)

ds + X(t)}dt

= µS (t)dt + σS (t)dW(t)

(We have essentially repeated the proof of Theorem 5.2.)
Exercise 5.4:Find the equation solved by the process sinW(t) = X(t),

say.
Solution: TakeF(x) = sin(x), F′(x) = cos(x), F′′(x) = − sin(x) and the

simplest version of Itô formula gives

dX(t) = cos(W(t))dW(t) − 1
2

sin(W(t))dt =
√

1− X2(t)dW(t) − 1
2

X(t)dt

Exercise 5.5:Find a solution to the equationdX = −
√

1− X2dW+ 1
2Xdt

with X(0) = 1.
Solution: Comparing with Exercise 5.4 we can guessX(t) = cos(W(t))

and check that withF(x) = cosx the Itô formula gives the result.
Exercise 5.6:Find a solution to the equation

dX(t) = 3X2(t)dt − X3/2(t)dW(t)

bearing in mind the above derivation ofdX(t) = X3(t)dt + X2(t)dW(t).
Solution: An educated guess (the ‘educated’ part is to solveF′ = −F3/2

so that the stochastic term agrees, the ‘guess’ is to useF of some special
form (1+ax)−b, then keep fingers crossed that thedt term will be as needed)
givesF(x) = (1 + 1

2 x)−2 with F′(x) = −(1 + 1
2 x)−3

= −[F(x)]
3
2 , F′′(x) =

3(1+ 1
2 x)−4

= 3F2(x) soX(t) = F(W(t)) satisfies the equation.
Exercise 5.7:Solve the following Vasicek equationdX(t) = (a−bX(t))dt+

σdW(t).
Solution: Observe thatd

[

ebtX(t)
]

= aebtdt + σebtdW(t) (Exercise 4.10)
hence

ebtX(t) = X(0)+ a
∫ t

0
ebudu + σ

∫ t

0
ebudW(u)

= X(0)+
a
b

(

ebt − 1
)

+ σ

∫ t

0
ebudW(u),
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so that

X(t) = e−btX(0)+
a
b

(

1− e−bt
)

+ σe−bt

∫ t

0
ebudW(u).

Exercise 5.8:Find the equation solved by the processX2 whereX is the
Ornstein-Uhlenbeck process.

Solution: Recall dX(t) = µX(t)dt + σdW(t), so by the Itô formula,
dX2(t) = 2X(t)dX(t) + σ2dt = 2µX2(t)dt + 2σX(t)dW(t) + σ2dt.

Exercise 5.9:Prove uniqueness using the method of Proposition 5.3 for
a general equation with Lipschitz coefficients (take any two solutions and
estimate the square of their difference to show that it is zero).

Solution: Suppose

Xi(t) = X0 +

∫ t

0
a(s, Xi(s))ds +

∫ t

0
b(s, Xi(s))dW(s), i = 1, 2.

Then

X1(t) − X2(t) =
∫ t

0
[a(u, X1(u)) − a(u, X2(u))]du

+

∫ t

0
[b(u, X1(u)) − b(u, X2(u))]dW(u)

and using (a + b)2 ≤ 2a2
+ 2b2 and taking expectation we get

f (t) := E(X1(t) − X2(t))
2

≤ 2E

(∫ t

0
[a(u, X1(u)) − a(u, X2(u))]du

)2

+2E

(∫ t

0
[b(u, X1(u)) − b(u, X2(u))]dW(u)

)2

.

Using the Lipschitz condition fora, the first term on the right is estimated

by 2E
(∫ t

0
K[X1(u) − X2(u)]du

)2
and we can continue from here as in the

proof of Proposition 5.3.
Itô isometry and the Lipschitz condition forb allow us to estimate the

second term by

2E

(
∫ t

0
[b(u, X1(u)) − b(u, X2(u))]dW(u)

)2

= 2
∫ t

0
E[b(u, X1(u)) − b(u, X2(u))]2du

≤ 2
∫ t

0
K2
E[X1(u)) − X2(u)]2du
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Putting these together we obtainf (t) ≤ 2K2(1 + T )
∫ t

0
f (u)du and the

Gronwall lemma impliesf (t) = 0, i.e. X1(t) = X2(t).
Exercise 5.10:Prove that the solution depends continuously on the ini-

tial value in theL2 norm, namely show that ifX, Y are solutions of (5.4)
with initial conditionsX0, Y0, respectively, then for allt we haveE(X(t) −
Y(t))2 ≤ cE(X0 − Y0)2. Find the form of the constantc.

Solution: We proceed as in Exercise 5.9 but the first step is

X(t) − Y(t) = X(0)− Y(0)+
∫ t

0
[a(u, X(u)) − a(u, Y(u))]du

+

∫ t

0
[b(u, X(u)) − b(u, Y(u))]dW(u).

After taking squares, expectation and following the same estimations we
will end up with

f (t) ≤ 2E(X0 − Y0)
2
+ 2K2(1+ T )

∫ t

0
f (u)du

so after Gronwall

E(X1(t) − X2(t))
2 ≤ 2 exp{2K2(1+ T )T }E(X0 − Y0)

2.


