Stochastic Calculus for Finance
Solutions to Exercises

Chapter 1

Exercise 1.1: Show that for eaclm, the random variableK(1),. .., K(n)
are independent.

Solution: SinceK(r) have discrete distributions, the independence of
K(1),...,K(n) means that for each sequerdg...,V,, V; € {U,D} we
have

P(K(1) = V1, K(2) = Va, ..., K(n) = V)
= P(K(1) = V4) -...- P(K(n) = V).

Fix a sequencéd/y,...,V,. Start by splitting the interval [d] into two
intervalsly, Ip of length1, Iy = {w : K(1) = U}, Ip = {w : K(1) = D}.
Repeat the splitting for each interval at each stage. Atestag we have
ly = luu U lup, Ip = Ipu U Ipp and the variabl&(2) is constant on each
ls. For examplelyp = {w : K(1) = U, K(2) = D}. Using this notation we
have

{K(1) = Va} = Iy,, {K(1) = V1, K(2) = Vo) = v, v,
.. {K(l) = Vl, ce K(n) = Vn} = |V1 V-

,,,,,

The Lebesgue measurelgf v, is Zi , So that

P(K(1) = Vi,...,K(n) = V,) = %

. From the definition oK (r) follows directly P(K(1) = V;) - ... P(K(n)
Vi) = .

Exercise 1.2:Redesign the random variabl&n) so thatP(K(n)
U) = p€ (0, 1), arbitrary

Solution: Given the probability space&X, ¥, P) = ([0, 1], B(]0, 1]), m),
wherem denotes the Lebesgue measure, we will define a sequence of ran
dom variablekK(n),n=1,2,....0nQ.

First split [0 1] into two subintervals: [OL] = Iy U Ip, wherely, Ip are
disjoint intervals with lengthy| = p, [Ip| = g, p+ g = 1, with Iy to the
left onlp.. Now set
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K(L w) = {

ClearlyP(K(1) = U) = p, P(K(1) = D) = g. Repeat the procedure sep-
arately only andlp, splitting each into two subintervals in the proportion
p to q. Then'U = lyy U lyp, Ip = lpy U lpp, |luul = pzy [lupl = pPa,
lloul = qp, llpp] = @?. Repeating this recursive constructiotimes we

Uifa)E'U
Difa)G'D ’

p'g!, wherel = #a; : a; = U}
Again set

K(r, w) ={

U If w € I(tl,...,(tr,l,U
D If w € I(rl,...,(tr,pD

If the valueU appears$times in a sequenae, ..., ar_1, thenll,, . ,ul =
pp'g . There are(rjl) different sequences, . . ., ;_1 havingU exactly
atl places. Then foA, = {K(r) = U} we find

S (r-1 [ -1l
P(A) =Pk =0 =p (| o
1=0

=p(p+a)t=p

As a consequence B(K(r) = D) = g. The proof that the variables
K(1),...,K(n) are independent follows as in Ex. 1.1.

Exercise 1.3:Find the filtration inQ = [0, 1] generated by the process
X(n,w) = Zwl[o’l_%](a)).

Solution: SinceX(1)(w) = Oforallw € [0, 1], we haveFxy = {0, [0, 1]}.
ForanyB c R anda € R, letaB = {aw : w € B}.
Now fork > 1, B € B(R),

e ((B)n[0.1- ]if0 ¢ B
X(K)Y(B) = { (%B)ﬂfO,l—%]U(f— 1.1]if0 e B. }

Then Hence&Fyg = (AUE : A€ B((0,1- £])},E € {0,{0} U (1 - £,1]}).
Suppose K k < n. If C € Fxi andC € B((0,1 - 1]) thenC € B((0,1 -
) € Fxm- If C = AU{0}U(1-%,1], Ae B((0,1-]), thenC = (AU (1-
£ 1-1Du0ju(1-£,1] € Fx(y becausdu (1- £, 1- 2] € B((0, 1-2]).
In consequencEx C Fx for all k. This impliesF X = Fx).

Exercise 1.4:Working onQ = [0, 1] find (by means of concrete formu-
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lae and sketching the graphs) the marting4M#,,) whereY(w) = w? and
Fn is generated b¥X(n, w) = 2w1[0,1,%)(w) (see Exercise 1.3).

Solution: According to Exercise 1.3 the natural filtratigf, of X has
the forn¥, = £ = Fx), SO

7}=MUE:Aeﬂ@i—%hEeMJmuﬂ—%ﬂn

Hence the restriction @&(Y|#,) to the interval (01— %] must be aB3((0, 1-
%])-measurable variable arf{Y|#,) = Yon (01— %] satisfies Def. 1.9
for A c (0,1 - i]. The restriction ofE(Y|77) to the set{0} U (1 — 1, 1]
must be measurable with respect to thdéield {0, {0} U (1 - % 1]}. Thus
E(Y|#,) has to be a constant functioB(Y|7,) = ¢, on{0} U (1 — % 1].
Condition 2 of Def. 1.9 give%f%,l] cdP = f(y%,u w?dP. It follows that

E(Y[F)(@) =c=1-%+ L forwe (1-1,1].

3n2
Exercise 1.5:Show that the expectation of a martingale is constant in
time. Find an example showing that constant expectatios do&imply
the martingale property.

Solution: Let ¢ be the trivialo-algebra, consisting oP-null sets and
their complements. For every integrable random varixbi(X|{) = E(X).
If M is a martingale, theB(M(n + 1)|,) = M(n) for all n > 0. Using the
tower property we obtain

E(M(n)) = E(M(n)I&) = E(M(n + 1)IF0)I{)
= B(M(n + 1)i¢) = E(M(n + 1)).

If X(n), n > 0 is any sequence of integrable random variables, then for

the sequenc&(n) = X(n) — E(X(n)) the propertyE(X(n)) = E(X(n) —
E(X(n))) = E(X(n)) — E(X(n)) = 0 holds for alln.

Exercise 1.6:Show that martingale property is preserved under linear
combinations with constant cfiients and adding a constant.

Solution: Let X, Y be martingales with respect to the filtratigh and
fix @ € R. DefineZ = X+ 2Z, W = aX, U = X+ «a. ThenE(Z(n)]) =
E(IX(n) + Y(n)I) < E(X(M))) + E(Y(N)]) < +eo, EQW(N)]) = E(aX(n)]) =
l@[E(IX(N)]) < +oo. It implies thatZ(n) andW(n) are #,-measurable and
they have finite expectation. Finally the linearity of cdiatial expectation
givesE(Z(n + 1)F,) = E(X(n + 1) + Y(n + L)IF) = E(X(n + LIF) +
E(Y(n+1)F7) = X(n) + Y(n) = Z(n), E(W(n + 1)F7) + E@X(n+ 1)) =
aBE(X(n+1)|F,) = aX(n) = W(n). The procesyd is the special case of this
Z whenY(n) = a for all n.
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Exercise 1.7:Prove that ifM is a martingale, then fan < n,
M(m) = E(M(n)|Fm).

Solution: Using the tower property — m— 1 times we obtain
M(m) = E(M(m + 1)i%m) = E(E(M(M + 2)[Fm.1)[Fm)
=E(M(M+ 2)|Fm) = ... = E(M(M)|Fm).

Exercise 1.8:Let M be a martingale with respect to the filtration gen-
erated byL(n) (as defined for random walk), and assume for simplicity
M(0) = 0. Show that there exists a predictable proddsaich thatM(n) =
S HELG) (e.M(n) = S, Hi)[ZG)-Z(i-1)]. whereZ(i) = 3}, L(j).
(We are justified in calling this result a representatiorotben: each mar-
tingale is a discrete stochastic integral).

Solution: Here the crucial point is that the random variallés) have
discrete distributions and the proced4(()).so is adapted to the filtration
-, which means thaMm(n), n > 0 also have discrete distributions and
M(n) is constant on the sets of the partiti®L, ..., L,). From the for-
mulaM(n) = 3L, H(i)L(i) we obtainM(n+ 1) — M(n) = H(n+ 1)L(n+ 1).
SincelL?(k) = 1 a.s. for allk > 1, we defineH(n + 1) = [M(n + 1) —
M(n)]L(n for n > 0. To prove thatKl(n + 1)).0 is a predictable process
we have to verifyM(n + 1) is F--measurable. This is equivalent to the
conditionH(n + 1) is constant on the sets of the partit®(L,, ..., Ly).
Write Ay, 0 = fw € Q 1 Li(w) = a1,....Lk(w) = aaj € {(-1,1}}.

A, - Moreover,P(A,, o) = 2—1k because th&; are i.i.d. random vari-

.....

.....

.....

2a0 = a_1 + @y or, equivalently—(a_; — ag) = @1 — &o. Using this equality
we verify finally that

H(n+ Dla, ., = [M(n+1)- MO)IL(N+ D)4,

= (-1)(@-1— @)1a,, .1t (@1 —@0)1A, .
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.....

Exercise 1.9:Show that the procesZ(n), the square of a random walk,
is not a martingale, by checking tha{z?(n + 1)|7,) = Z?(n) + 1.

Solution: Assume, as before, thatk), k = 1,...is a symmetric ran-
dom walk,L(k) € {-1,1} and setL(0) = 0. The variablesl{(k))o are
independent and(k+1) = Z(K) + L(kK), k > 0, Fi = F,-. ThenE(L(k)) = 0,
E(L?(K)) = 1 fork > 1 and the variableZ(k), Z(k?) areF,-measurable and
the variables (k+ 1), L2(k+ 1) are independent of,. Using the properties
of conditional expectation we have

E(Z*(n+ 1)i%0) = E((Z(n) + L(n + 1))%7)

= E(Z*()F7) + 2Z(ME(L(n + 1)F7) + E(L*(n + 1)i77)
(linearity, measurability)

= Z2(n) + 2Z(N)E(L(n + 1)) + E(L?(n + 1))
(measurability,independence)

=Z7%(n)+1forn> 0.

Exercise 1.10:Show that ifX is a submartingale, then its expectations
increase witm:

E(X(0)) < E(X(1)) <E(X(2)) < ---,
and if X is a supermartingale, then its expectations decreaseaseases:

E(X(0)) > E(X(1)) > E(X(2)) > - .

Solution: SinceX is a submartingaleX(n) < E(X(n + 1)) for all n.
Taking expectations on both sides of this inequality we iobta

E(X(n)) < E(E(X(n+ 1)[F7)) = E(X(n + 1)) for all n.
For a supermartingale proceed similarly.

Exercise 1.11:Let X(n) be a martingale (submartingale, supermartin-
gale). For a fixedn consider the sequene@(k) = X(m+ k) — X(m), k>0
Show thatX’ is a martingale (submartingale, supermartingale) redativ
the filtration#, = Fm.x.

Solution: Let X be a martingale (submartingale, supermartingale). Then
X(m) is Fmk Measurable variable for ath, k. We haveE(X'(k + 1)|7,) =
E(X(M+ K+ 1) = X(M)|Fmar) = BX(M+ K+ 1)[Frpes) = EQX(M)Fr) = (2
, )X(M+ k) — X(m) = X' (k), for all k.
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Exercise 1.12:Prove the Doob decomposition for submartingales from
first principles:

If Y(n) is a submartingale with respect to some filtration, themetfex-
ist, for the same filtration, a martingall(n) and a predictable, increasing
processA(n) with M(0) = A(0) = 0 such that

Y(n) = Y(0) + M(n) + A(n).
This decomposition is unique.

Solution: The proces&(n) = Y(n)-Y(0),n > 0, is a submartingale with
Z(0) = 0. Therefore we may assunY€0) = O without loss of generality.
We prove the theorem with the use the principle of inductfeor.n = 1,
the decomposition formula would imply the relation

E(Y(1)iF0) = E(M(1)F0) + E(A(L)IF0)-
If this is to hold withM a martingale and predictable, we must set
A1) = E(Y(1)iFo) — M(0),

which shows tha#\(1) is Fo-measurable.
To arrive at the composition formula we now define

M(1) := Y(L) - A(L).

M(1) is F1-measurable becau¥€l) andA(1) are. Moreover,

E(M(D)IF0) = E(Y(D)IF0) — E(A(1)IF0) = E(Y(1)iFo) — A(1) = M(0).

which completes the initial induction step.

Assume now that we have definedgpadapted martingal®l(k) and a
predictable, increasing proce&&), k < n such thatA(k) andM(k) satisfy
the decomposition formula fo¥(k), for all k < n. Once again the decom-
position formula folk = n + 1 gives

E(A(n+ 1)Fn) = E(Y(n + 1)[Fn) — E(M(n + 1)iF%).
Hence it is necessary to define
A(n + 1) == E(Y(n + 1)) — M(n). (0.1)
Having A(n + 1) to conserve the decomposition formula we set

M(n+1) =Y(n+1)-An+1). (0.2)
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Now we verify thatM(k), A(k), k < n+ 1 satisfy the conditions of the theo-
rem. From (O1) A(n+1) isF,-measurable, becaubn) is F,-measurable.
Next from (Q1) and the decomposition formula forve have

AN+ 1) = E(Y(n + 1)%) — M(n)
= [E(Y(n + 1)|Fq) — Y(M)] + A(n) = A(n)

because is a submartingale. TheAk) is an increasing, predictable pro-
cessfok <n+1.

From (Q2), M(n + 1) is F,.1-measurable and, sino&n + 1) is F,-
measurable,

E(M(n + 1)IFn) = E(Y(n + 1)|Fq) — E(A(N + 1)IF0) = E(Y(n + 1)) — A(n+ 1)
= M(n), by (0.1)).

Thus M(K), k < n+ 1 is a martingale. By construction, the processes
M(K), Ak), k < n+ 1 satisfy the decomposition formula f&i(k) for all

k < n+ 1. By the principle of induction we may deduce that the preess

A andM, given by (01), (0.2) for all n, satisfy the conditions of the theo-
rem. The uniqueness is proved in the main text.

Exercise 1.13:Let Z(n) be a random walk (see Example 1.ZJD) =
0,Z(n) = ¥1_; L(j), L(j) = 1, and letF, be the filtration generated by
L(n), Fn = o(L(1), ..., L(n)). Verify thatZ2(n) is a submartingale and find
the increasing procegsin its Doob decomposition.

Solution: From relations (@), (0.2) we can give explicit formula for
the compensatok.

AK) = E(Y(K)|Fk-1) - M(k - 1)
= B(Y(K)|Fi) - Y(k - 1) + Ak — 1).

HenceA(k) — A(k — 1) = E(Y(K) — Y(k — 1)|#x_1). Adding these equalities
on both sides we obtain

A(n) = i E(Y(K) - Y(k - 1)), forn> 1. (0.3)
k=1

By Exercise 1.9E(Z?(n + 1)) = Z3(n) + 1 > Z2(n) whenZ(0) = 0,
i.e.,Z% is a submartingale. Next using the formula3)0given in Exercise
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1.12 we obtain

AN = D B(Z(K) - Z°(k - 1)Fi-0)
k=1

= Zn:[(zz(k— 1)+1)-Z%k-1)]=n
k=1

forn> 1.

Exercise 1.14Using the Doob decomposition, show tha¥iis a square-
integrable submartingale (resp. supermartingale)Hislpredictable with
bounded non-negativé(n), then the stochastic integral bff with respect
to Y is also a submartingale (resp. supermartingale).

Solution: Let Y be a submartingale. Then by the Doob decomposition
(Theorem 1.19) there exist unique martingsle@nd a predictable, increas-
ing proces®A, M(0) = A(0) = 0, such thatr(k) = Y(0) + M(Kk) + A(k) for
k > 0. HenceY(k) - Y(k — 1) = [M(k) - M(k — 1)] + [A(k) — Ak — 1)].
This relation gives the following representation for thecstastic integral
H with respect toY

n+1

X(n+1)= Z HK)[Y(K) - Y(k - 1)]
k=1

n+1

= > HRIM®K) - M(k-1)]
k=1

n+1

+ > HIRIAK) - Ak - 1)]
k=1
=Z(n+1)+B(n+1), n>0.

By the Theorem 1.1Z(k), k > 1 is a martingale. For the second term we
have

n+1

E(B(n+ 1)F7) = ) B(HQIAK) - Ak - 1)]F7)
k=1
n+1
= > HRIAK) - Ak - 1)]
k=1
=B(n) + H(n+ 1)[A(n+ 1) — A(n)] > B(n)

because by the predictability bf andA, the random variablad (K)[ A(K) —
A(k — 1)] areFn,-measurable fok < n+ 1. Also,H(k) > 0, andA(k) is an
increasing process. Taking together the propertiesaridB we conclude
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thatE(X(n+ 1)) = E(Z(n+1)|%5) +E(B(n+1)[F,) = Z(n)+ B(n) = X(n).
This proves the claim for a submartingale.

If Y is a supermartingale;Y is the submartingale, so the above proof
applies, which implies that the stochastic integral of aesopartingale is
again a supermartingale.

Exercise 1.15:Let  be a stopping time relative to the filtratiof,.
Which of the random variables+ 1, 7 — 1, 72 is a stopping time?

Solution: @) 7 =7+ 1,yes. Becausg’ =n} = {r=n-1} € F,_1 C Fn
forn>1.{r =0} =0 € F.

B) T = 7—1, no. Because we can only conclude thlat n} = {r = n+1} €
Fner for n > 0, so this set need not beih.

y) 72, yes. Becausgy : 7%, ke N} = {w : 7(w) = Kk} € Fx € F,, for n = k2,
keN.Forn¢ {(k*;ke N}, {w: 1(w) =n} =0 € Fp.

Exercise 1.16:Show that the constant random variabigy) = mfor all
w, is a stopping time relative to any filtration.

@ ifm#n

Solution: {r = n}:{ Q ifm=n

}then{r =n}e F,forallneN.
Exercise 1.17:Show that ifr andy are as in the Proposition, them v
is also a stopping time.

Solution: Use the condition (p. 155 : Q — N, then{g = n} € #, for
alneN o {g<n}eF,forallne N. We havelr Av=n} € F,foralln
s {r<nu{r<n eF,foralln.

Exercise 1.18:Deduce the above theorem from Theorem 1.15 by con-
sideringH(K) = 1-- (Let M be a martingale. If is a stopping time, then
the stopped procedd, is also a martingale.)

Solution: Let M andr be a martingale and a stopping time for filtration
(Fn)nso- TakeY(n) = M(n) — M(0) forn > 0. ThenY is also a martingale
andE(Y(0)) = 0. Now write forn > 1

Y:(n,w) =Y(NA1(w),w) =YL, w) +(Y2,w)— Y(Lw)+...
+(Y(N A T7(w), w) — Y(N A 7(w) — 1, w))

= > Le(@)(Y(K) - Y(k- 1))
k=1

ThusY, can be written in the forny,(n) = >¢_; H(K)(Y(K)—Y(k-1)) where
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H(K) = 1;-»K. The process$l is a bounded predictable process because it is
the indicator function of the s¢t > k} = Q—Uﬁ;ll{r =m} € Fr_1. By The-
orem 1.15Y; is a martingale. This giveB(Y,(n)) = (Y,(0)) = E(Y(0)) = O.
HenceE(X.(n)) = E(X(0)) for all n.

Exercise 1.19:Using the Doob decomposition show that a stopped sub-
martingale is a submartingale, (and similarly for a supetimgale). Alter-
natively use the above representation of the stopped paras use the
definition to reach the same conclusions.

Solution: Use the form of the stopped process given in the proof of
Proposition 1.30. LeiM andr be a submartingale (supermartingale) and a
finite stopping time. From the form dfl, we have

M(n+1)= > M)lem+ MO+ 1)l
m<n+1
Since each term of the right hand side is integrable varjalén + 1) is
also integrable variable. Now we can write

E(M,(n+1)F0) = > B(M(M)Lnl7)
m<n+1

+E(M(n + 1)1eonialFn)-

The processeM(m)l._.m,, m < n+ 1 andl.ng = 1o — 1y are Fp-
measurable, then

E(M(n+ DIF) = > ML + LeznaB(M(n + 1)Fr)
m<n+1

> () Z M(M) Lo + M(N) 1oy + 1roneaM(N)

m<n

(M is sub (super) martingale)
= > M(M) L=y + M(0) L= = M, (n) for all n > O.

m<n

Exercise 1.20:Show thatr; is a sube-field of .

Solution: @) Q € ¥, becaus&®@ N{r=n} ={r=n} e F,foralln>0.
B) Let Abelong#-. Itis equivalent to the conditioAN {r = n} € F, for all
n. Then Q\ A)n{r=n} ={r=n}—- (AN {r =n}) e F, for all n, because
¥, areo-fields. The last condition meags\ A € 7.

v) Let A belong¥; fork = 1,2,.... ThenAc N {r = n} € 7, for all n.
Hence it follows (J; A) N {7 = n} = U1 (Ak N {T = n}) € F, for all n.
This means )2, Ac € 7.
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Exercise 1.21Show that ifr, v are stopping times with < v then¥, c
F.

Solution: Let 7, v be stopping times such that< v. Let A € #,. Ac-
cording to the definition of;, An{r = m} € F,form = 0,1,... Since
T < v, it holds (Un.ofr = M) n{yr < n} = {v < n}. Hence we have
An{r<n = U oAn{t = m)n{r <n} e F for 7y, € F, and
{v < n} € F. nwas arbitrary, according to the condition (p. ¥5§ ¥-.

Exercise 1.22:Any stopping timer is ¥.-measurable.

Solution: We have to provér < k} € #, foreachk = 0,1,.... Thisis
equivalent to the conditiofr < k} N {r = n} € F, for all n, k. We have

@ if k<n
B:{rsk}m{rzn}z{{T:n} ifnsk}ThenBe?‘—'n.Asconse-
quencer < k} € 7.

Exercise 1.23:(Theorem 1.35 for supermartingales).Nf is a super-
martingale and, v are bounded stopping times< v then

E(MO)IF7) < M(7).
Solution: It is enough to prove that

fAE(M(v)m)dP:fAM(v)dPszM(r)dP

for all A € F.. We will prove the equivalent inequalitE(1a(M(v) —
M(7))) < O for arbitraryA € #.. From the proof of Theorem 1.35 we know
that the variablelo,(M(v) — M(7)) can be written in the fornia(M(v) —
M(»)) = X,(N) where the process(n) is as follows

X(n) = > HIM®K) - M(k - 1)),
k=1

X(0) = 0, H(k) = 14 - 1;«y andN is a constant such that < N. Ad-
ditionally H is a bounded and predictable process. Now the assumption
M is a supermartingale implies that is also supermartingale Exercise
1.14). Hence it follows by the results of Exercise 1.19 et $topped
processX,(n) is also supermartingale. But for a supermartingale we have
E(X,(N)) < E(X,(0)) = E(X(0)) = 0, which completes the proof.

Exercise 1.24Suppose that, witM(n) and as in the TheoremM(n))P
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is integrable for some > 1. Show that we can improve (1.4) to read

P(TganXM(k) > Q) < /l_lpf MP(n)dP < /I—J;JE(MP(FI)).

{maXcn M(K)>A}

Solution: If p > 1 the functionx®, x > 0 is a convex, nondecreasing
function. AsMP(n) is integrable, Jensen’s inequality (see p.10) and the fact
thatM is a submartingale imply

E(MP(n + 1)i77) = (E(M(n + 1)|F7))° = MP(n).

Applying Doob’s maximal inequality (Theorem 1.36) to theat{max., M(k) >
A} = {max<, MP > AP} we obtain the result.

Exercise 1.25:Extend the above Lemma t@ for everyp > 1, to con-
clude that for non-negativé € LP, and with its relation toX > 0 as stated
in the Lemma, we obtaifiX||, < pf”l IYllp. (Hint: the proof is similar to
that given for the casp = 2, and utilises the identity f|z>x) xPldx = xP.)

Note: The definition of the normed vector spaceis not given explic-
itly in the text, but is well-known: one may prove thatpf> 1 the map
X — (E(IX|P))*P = |IX||, is a norm on the vector space of plintegrable
random variables (i.e. whei#(|X|’) < o ), again with the proviso that
we identify random variables that are a.s. equal. The Schim@quality
in L? then extends to the Holder inequalif@(|XY|) < IXII, 1Yl when
XelPYe Lq,—;+;14=1.

Proof: The extension of Lemma 1.38 that we require is the following:
Assume thak, Y are non-negative random variabl&ss in LP(Q), p >
1. Suppose that for all > 0,

XP(X > X) < f 1‘XZX|YdP.
Q

ThenX s in LP(Q) and

p
p—1

IE(X)Ilp = (B(XP))? < IECY)lp-

The proof is similar to that of Lemma 1.38. First considerd¢hee wherX
is bounded. The following formula is interesting on its own:

E(XP) = f X LP(X > )dx, for p> 0.
0
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To prove it, substituteg = X(w) in the equalityz” = p fow Lixen (X)XP1dlX,
and we obtain

20¢) = [ X)) = [ p( [ 1(xgx(w))(x)xpldx)dp(w)-

By Fubini's theorem

E(XP) = fow xP1 (fg 1(XZX)(w)dP(a))) dx = fow pXPIP(X > x)dx.

Our hypothesis and Fubini's theorem once more give

500) <p [0 [ stV

=0 [[[ [ 200020 YaeP(o)

p fg ( fo " xpzdx) Y(w)dP(w)

_ FF)l X H@)Y(@)dP().

for p> 1.
The Holder inequality withpandq = =2; yields [, XP-1YdP < (E((XP1)71)) 5 (E(YP))s.
The last two inequalities givgX|lp = E(XP) < IXIEHIY]lp. This is
equivalent to our claim foK bounded.
If X is not bounded we can tak& = X A n. The inclusion{X, < x} D
{X < x} impliesP(X, > x) < P(X > x) and from the assumptions of the
theorem we obtain the inequalities

L|
p-1

XP(Xn = X) < XP(X > X) < fl(XZX)YdP < fl,XHZX)YdP.

As X, is bounded this giveB(X}) < (pT”l)P]E(YP) foralln > 1. The se-
quenceX! increases tXP a.s., the monotone convergence theorem implies
E(XP) < (pT”l)PE(YP) and also as a consequengee LP(Q).

Exercise 1.26Find the transition probabilities for the binomial tree. Is
it homogeneous?

Solution: From the definition of the binomial tree the behaviour of ktoc
prices is described by a sequence of random varigies= S(n— 1)(1+
K(n)), whereK(n, w) = Ula (w) + D1p1ja,(w), S(O) given, deterministic.
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As in the Exercise 1.2 we hayK(n) = U) = 1 - P(K(n) = D) =
p, p € (0,1) forn > 1 and the variable&(n) are independent random
variables. From the definition &(n), S(n) = S(0) [TL,(1 + K(i)). Then
7o = o(SA),...,S(n) = FX = o(K(1),...,K(n)) and for any Borel
functionf : R - R is

E(f(S(n+ 1))7Fy) = E(F(S(M)(L + K(n+ 1))F,)
= E(F(f)(S(n). K(n+ 1)iF7)

whereF (f)(x,y) = f(x(1+Y)). The variablek (n+ 1) is independent of ¥
andS(n) is 7K measurable, by the Lemma 1.43 we have

E(f(S(n+ 1IFy) = G(F)(S())
where

G(f)(x) = E(F(f)(x, K(n+1)))
= pf(x(1+U)) + (L - p)f(x(1+ D)).

SinceG(f) is a Borel function, the penultimate formula implies, by-de
inition of conditional expectation, tha(f(S(n + 1))%°) = E(f(S(n +
1)) Fswm)- So the processS(n))nso has the Markov property. Assuming
f = 1g, un(x, B) = G(1g)(X) for Borel setsB we see that, for every fixed,
un(X, B) = plg(x(1+ U)) (1 - p)1s(X(1 + B)) is a measurable function and
for every fixedx € R, un(X,-) is a probability measure oB(R). We also
have

P(S(n+ 1) € B|fsm) = E(Ls(S(n + 1))Fsm) = un(S(N), B).

Thus theu, are transition probabilities of the Markov proceSKn))nso-
This is a homogeneous Markov process, agthéo not depend on.

Exercise 1.27:Show that symmetric random walk is homogeneous.

Solution: According to its definition, a symmetric random walk is de-
fined by takingZ(0) and definingZ(n) = Z(n— 1)+ L(n), where the random
variablesZ(0), L(1),...,L(n) are independent for every> 1. Moreover,
P(L(n) = 1) = P(L(n) = -1) = % (see Examples 1.4 and 1.46). Since
Z(n) = Z(0) + X, L(i), we haveF? = o-(Z(0), L(2), ..., L(n)).

For any bounded Borel functioh : R — R we havef(Z(n + 1)) =
f(Z(n) + L(n+ 1)) = F(f)(Z(n), L(n + 1)) whereF(f)(x,y) = f(x+Yy). The
variableL(n + 1) is independent of ? andZ(n) is Fz,-measurable, so by
Lemma 1.43 we obtain

E(f(Z(n+ D)FY) = E(F(F)(Z(M), L(n+ 1)) = G(F)(Z(n).
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where

G(f)(x) = E(F(f)(x, L(n+ 1))) = E(f(x+ L(n+ 1))
= %(f(x+ 1)+ f(x-1)).
There last two relations testify th&(f) is a Borel function and that the
equalityE(f(Z(n + 1))F ) = E(f(Z(n + 1))[Fzn) holds.
Thus ¢(n))ns0 is a Markov process. Assumirfg= 1g, u(X, B) = %1B(x+
1)+ 1g(Xx— 1) = 65,1(B) + 6x_1(B), whereB is a Borel setx € R we obtain

P(Z(n + 1) € Bifzm) = G(1e)(Z(n)) = u(Z(n). B).

Again, u(-, B) is a measurable function for each Borel Bandu(x, -) is a
probability measurable for everye R, so we conclude thatis a transition
probability for the Markov procesZ(n))nso. Sinceu does not depend on
n, this process is homogeneous.

Exercise 1.28:Let (Y(n))ns0, be a sequence of independent integrable
random variables ortY, ¥, P). Show that the sequenzén) = 3., Y(i) is
a Markov process and calculate the transition probatsldigpendent on.
Find a condition foiZ to be homogeneous.

Solution: From the definitiorZ(n) = Y., Y(i) follow the relationsF? =
a(Z(0),...,Z(n)) = o(Y(0),...,Y(n) = 7V andZ(n+1) = Z(n)+Y(n+1).
For any bounded Borel functioh: R — R we have

f(Zn+ 1)) = f(Z(n) + Y(n+ 1)) = F(f)(Z(n), Y(n+ 1))

whereF(f)(x,y) = f(x+y). The variablez(n) is 7 measurable and by our
assumptionY(i))i»o is a sequence of independent variables. THms+ 1)
is independent of Z. Now using Lemma 1.43 we obtain

E(f(Z(n + 1))iF) = E(F(F)(Z(N), Y(n+ 1)F)
= Gn(f)(Z(n))
where
Gn(f)(X) = E(F(f)(x, Y(n+ 1)) = E(f(x+ Y(n+ 1)))
= jl; f(X+ y)Py(n1)(dy) for n > 0.

Py(n+1) is the distribution of the random variab¥n + 1). From the form
Gn(f)(X) = ﬁg f(X + ¥)Py(n.1)(dy) and the Fubini theorenG,(f) is a mea-
surable function. The equali§(f(Z(n + 1))|FZ) = Gu(f)(Z(n)) implies
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thatE(f(Z(n + 1))IF?) is ¥z measurable function. Then from the defini-
tion of conditional expectation we hal# f (Z(n + 1))|7zw) = E(f(Z(n +
1))Fz) a.e. . So the procesz(f))n-o is a Markov process.

Puttingun(x, B) = Gn(1g)(X), n > 0, we see that for every Borel sBt
un(+, B) is a measurable function. Next, den&gy) = x + y. Of courseS,
is a Borel function for everx. From the definition ofy, we have relations

in(%, B) = f 16(Sx(y)Pyine(@)

= j}; 1s,18)(Y)Pyreny (dy) = Py(niy(S5*(B)).
This shows that for every € R, un(X, -) are probability measures. Finally

P(Z(n + 1) € BlFz() = E(1a(Z(N + 1))|Fzm)
+ G(1s)(2(n) = un(Z(n), B)

n > 0. Collecting together all these properties we concludettimmea-
suresun, N > 0, are the transition probabilities of the Markov process
(Z(N))n=o. From the definition ofi, we see that if the distribution functions
Py of variablesY(n) are diferent, theru, are diferent and the process
Z(n) is not homogeneous. If for afl variablesY(n) have the same distri-
bution function that iy, = Py(g) for all n, thenu, = o for all n and the
proces<(n) is homogeneous.

Exercise 1.29:A Markov chain is homogeneous if and only if for every
pairi,j €S
P(X(n+1) = jIX(n) =i) = P(X(1) = jIX(0) =) = p;; ~ (0.4)

for everyn > 0.

Solution: A Markov chainX(n), n > 0, is homogeneous if for every
Borel setB andn > 0 the equatiorE(1g(X(n + 1)) Fxwm) = u(X(n), B) is
satisfied, wherg is a fixed transition probability, not dependingmrin the
discrete case, the variabl¥fn), n > 0 take values in a finite s¢0, .. ., N}.
The relationlg(X(n+1)) = ¥ e Lix(n+1)-j) @nd additivity of the conditional
expectation allows us to restrict attention to sBts= {i}, i € S. Since
here the conditional expectations are simple functionsstamt on the sets
A' = {X(n) = i}, the condition that the proces§n) be homogeneous is

equivalent to
EQxmsn=jlFxm) - Lao = pu(i. {10
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for everyi, j € S, n > 0. Denotingu(i, {j}) = p;; we obtain that the last
equalities are equivalent to the formulBEX(n + 1) = jIX(n) = i) = p;; for
alli,j e Sandn > 0.

Comming back to the financial example (see p.32) based oiit catd
ings this means that the process of rating of a country is aolgemeous
Markov process if the rating of a country at time- 1 depends only on its
rating at timen (it close not depend on its previous ratings)and the proba-
bilities p;; of rating changes are the same for all times.

Exercise 1.30:Prove that the transition probabilities of a homogeneous
Markov chain satisfy the so-callé€hapman-Kolmogorov equation

pitk+1) =" pe(Rpr(1).

res

Proof: Denote byP* the matrix with entrie; i(K) and denote the entries
of thek-th power of the transition matri® by p, i, j € S. We now claim

ij P
thatP* = P for all k > 0, or equivalentlyp = pi;(k) for all i, j, k.
To prove our claim we use the induction principle.

Stepl. Ifk = 1, thenp? = p;; = p;j(1), soP = P.

Step2. The induction hypothesis. Assume that fof &lim, Pl =P,
Step3. The inductive step. We will prove thit! = P™1, We have
pij(m+ 1) = P(X(m+ 1) = jIX(0) = i)
= Z P(X(m) = r|X(0) = )P(X(m+ 1) = jIX(m) =r, X(0) = i)
res

= > pie(m) - POX(M+ 1) = jIX(m) =1, X(0) = ).

reS
The following relations hold on the seX(m) = r}
P(X(m+ 1) = jIX(m) = r, X(0) = i)
= E(1;(X(M + 1))Fx©0).x(m)
= B(E(1j)(X(M+ 1) F I Fxoxm) (tower property)
= E(E(L;(X(m+ 1)Fxm)|Fxoxm) (Markov property)
= E(1;,(X(m+ 1))[Fxm)) (tower property)
= P(X(m+1) = jIX(M) = 1) = prj

(Xiis Markov, homogeneous, Exercise 1.29). Utilizing thisitewe obtain
pii(m+ 1) = 35 pir(Mpy for all i, j. This equality means th&™?! =
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P™P. Hence by the induction assumptiBfi*! = P™. Now by the Induction
PrincipleP* = P for all k > 1 and the claim is true.

Now our exercise is trivial. From the equal@®*' = P¢P' it follows that
Pkl = PPl Writing out the last equation for the entries completes the

proof.



Solutions to Exercises 19

Chapter 2

Exercise 2.1:Show that scalings other than by the square root lead nowhere
by proving thatX(n) = h*L(n), @ € (0, %), implies Y., X(n) — 0 in L2
while for a > % this sequence goes to infinity in this space.

Solution: SinceL(n) has mean 0 and variance 1 for eackve have, by
independence and sinbe= <,

N
Z X(n)
n=1

2

N
= Var(h* Z L(n)
2

n=1

N
= b " Var(L(n)
n=1

— hZQN — h2a71.

Whenh — 0, this goes to 0 ifr < $ and to+eo if @ < 3.

Exercise 2.2:Show that CowV(s), W(t)) = min(s, t).

Solution: SinceE(W(t)) = 0 andE(W(t) - W(s))> =t—sforallt > s>
0, we have CowV(s), W(t)) = E(W(S)W(t)) andt — s = E(W(t) - W(s))? =
E(WA(t)) — 2E(W(S)W(1)) + E(W?(9)) = t— 2E(W(S)W(t)) + s. This equality
implies the formul&(W(s)W(t)) = s = min(s, t).

Exercise 2.3ConsiderB(t) = W(t) — tW(1) for t € [0, 1] (this pro-
cess is called the Brownian bridge, sinBé) = B(1) = 0). Compute
Cov(B(s), B(t)).

Solution: E(B(r)) = E(W(r)) —rE(W(s)) = 0 for allr > 0 for E(W(s)) =
Oforallr. Then

Cov(B(s), B(t)) = Cov(B(s), B(t)) = E(W(S) — sW(1))(W(Y) - tW(1))
= E(W(S)W(1)) — SE(W(L)W(1)) — E(W(W(1)) + SLE(W(1))
= Cov(W(s), W(t)) — SCov(W(1), W(t)) — tCov(W(s), W(1)) + STE(W3(1))
=min(s;t) — smin(t, 1) — t(s, 1) + st
_{ s(1-t) ifs<t<1 }
Sl td-9) ift<ss<l [°

Exercise 2.4:Show directly from the definition that BV is a Wiener
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process, then so are the processes giverWt) and %W(czt) for any
c>0.

Solution: The process-W(t) obviously satisfies the Definition 2.4. We
consider the proces§t) = %W(czt), c> 0,t > 0. Itis known (see [PF])
that if, for two given random variabléd, V and every continuous bounded
functionf : R — R we haveE(f(U)) = E(f(V)), then the distribution®,
andPy of U andV are the same. First note that;) = Pw forallt > 0,
since

E(f(Y(1) = fﬂ f (%W(czt)) dp

1 1 2
= f(—x) e 2z dx (W has normal distribution)
fR C /] V2nct

1 N :
= | f(y)———=¢e =z dy (change of variable=xc
| 101—5=eEay ehang y)
= E(f(W(D)).
(i) We verify the conditions of Definition 2.4. Condition 1 @dvious.
For Condition 2 2 take & s< t, B e B(R). Then
P((Y(t) - Y(9) € B) = P(%(W(czt) - W(c?s)) e B

= P((W(c’t) — W(c?9)) € g;1(B)) (wheregq(x) = %X)

= P((W(c?t - ¢?9)) € g;}(B)) (Condition 2 forW, the same increments)
= P((%W(cz(t - s))) € B) =P(Y(t-s) € B) = P(W(t - 5) € B)

= P((W(t) = W(9)) € B).

ThusY(t) — Y(s) andW(t) — W(s) have the same distribution. For the
third condition set0< t; < ... < ty,. Then 0< ¢ < ... < %ty
and the incrementg/(c’t;) — W(c%o), . .., W(C%ty,) — W(c?t, 1) are
independent by independence of the incrementd/(j. Hence the
processY(t) has independent increments. The path¥ afe contin-
uous for almost allv because this holds faw.

Exercise 2.5 Apply the above Proposition to solve Exercise 2.4. In other
words, use the following result to give alternative prodfgrercise 2.4: If
a Gaussian processhasX(0) = 0, constant expectations, a.s. continuous
paths andCov(X(s), X(t) = min(s, t), then it is a Wiener process.
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Solution: The proof that-W is again a Wiener process is clear, as it
is Gaussian,, a.s. continuous and has the right covariaRoethe second
part we prove two auxiliary claims:

1.If X(t), t = O is a Gaussian process and 0, thenY(t) = X(bt),t > 0
is a Gaussian process.
2.1f Y(t), t > 0 is a Gaussian process; 0, thenZ(t) = %Y(t), t>0isa
Gaussian process.
Proof of 1: Fix 0< tg < t; < ... < t5. Then the distribution vector of
incrementsY(t1) — Y(to), ..., Y(t,) — Y(t,-1)) is the same as the distribution
vector of the incrementsX(s;) — X(S), ..., X(Sh) — X(s-1)) wheres =
bt, i = 0,...,n. But the last vector is Gaussian becalses a Gaussian
process. According to Def. 2.M.is a Gaussian process.
For 2 we prove the following more general claim:
If U, UT = (Uy,...,U,)T is a Gaussian random vector with the mean
vectoruy and the covariance matrk andA is a nonsingulan x n (real)
matrix, thenV = AU is a Gaussian vector with mean vectgr= Auy and
covariance matrixy = AXyA'.
To prove this consider the mappidgu) = Au for u € R". Then for every
Borel setB € B(R") we have

P(V e B)=P(AoU e B)=PU cA*(B) = f

fu(u)du
B)

where fy is the density distribution function fdd, du = (du,..., du,).
Changing the variables,= A v, we obtairP(V € B) = [ fy(A"v) det(A™)dv.
From Definition 2.12 we conclude that

P(V € B) = f (2n)" (det=u)# expl(A™(v — Au))TZgHA (v - Aw))(deth) dv
B

. f (27) Hdet(AS, AT) expl(v - Au)T (AS,AT) H(v - Aw)id.
B

This formula shows that is a Gaussian vector with mean vegiQr= Auy
and covariance matrixy = A AT.

Returning to Point 2 above lat be the vector of increments of the
processZ, VT = (Z(t1) - Z(to), ..., Z(t,) — Z(t,-1)) andU the vector of
increments ofY, YT = (Y(t1) - Y(t), ..., Y(t,) — Y(t.-1)). DenoteA =
diagd,..., 1), where diag means diagonal matrix. Thén= AU andA
is a non-singular matrixc(> 0). SinceY was Gaussian, we know thetis
also a Gaussian vector. The proof of 2. is completed.

Now to solve our Exercise we verify the assumptions of Prijoos
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2.13. Our claims 1 and 2 show that the procé4s) = %)N(czt), t>0is
a Gaussian process becatfgdnas this property. Nex&(W(t)) = 0 for all
t becaus&(W(t)) = O for eacht. W has continuous paths becaiWehas
continuous paths. For the last condition

Cov(W(s), W(t)) = Cov %W(czs), %W(czt)) = C—lZ(CZS/\ c’t) = sAt.

By Proposition 2.13V is a Wiener process.

Exercise 2.6:Show that the shifted Wiener process is again a Wiener
process and that the inverted Wiener process satisfiestmorel?,3 of the
definition.

Solution: 1. Shifted process.
Verify the conditions of Definition 2.4 for Wiener process.
1. WH4(0) = W(u) — W(u) = 0.
2. For0< s<t, W!(t) - WH(s) = W(u+t)—W(u+s). HenceWw"(t) - W"(s)
has normal distribution with mean value 0 and standard tiewia/t — s.
3. Forallmand 0< t; < ... < ty, the increment&\"(t,,1) — WH(t,) =
WU + thy1) —W(U+t,),n=1,...,m- 1, are independent because the
increments of Winer proce®®(u + ty,1) —~W(u+t,),n=1,...,m-1are
independent.
4. For almost allw the paths ofV are continuous functions, then also the
paths ofW" are continuous.

2. Inverted process. Consider the procéds = tW(%) fort > 0,Y(0) =0.
SinceY(t) = fW(c?) for t > 0, c = 1, by the previous Exercis¥(t)
have normal distributiong(Y(t)) = 0, Vary(t) = t fort > 0. To verify
condition 2 of Def. 2.4, choose @ s < t. Then 0< } < $andY(t) -
Y(9) = (-9)(W(2)-W(3}))+(t—9)W(3). Since the incremenW/(1), W(2) -
W(%) are independent, Gaussian variables, the variablessI\N(% and
(—s)(W(%) - W(%) are also independent and Gaussian. Hence their sum
Y(t) - Y(9) also has a Gaussian distribution. N&@V(r)) = O forallr > 0
impliesE(Y(t)-Y(s)) = 0. This lets us calculate the standard deviatiasf
Y(t)-Y(s) as followso? = Var(Y(t) - Y(s)) = Var((—s)(W() - W()) +(t-
HW(E) = VarW(2) -W(E) + (t-92VarW(d)) = (L -3 +(t-97% =
t—s

To verify condition 3 of Def. 2.4 take & t; < ... < tp. It is necessary
to prove that the components of the vectof.,, (AYm)" = (Y(t1), Y(t2) —
Y(ty), ..., Y(tn) — Y(tn1))" are independent random variables. To obtain
this property we prove thatY,, has a Gaussian distribution and C6{g), Y(t)) =
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min(t, s) . These facts give the independence of componentsYpf(see
proof of Proposition 2.13). Itis @ & < - < ... < . Hence the compo-
nents of the vector\Zy,)T = (W(E), W(E=) = W(E), - W(E) = W())T

are independent and have normal distributions as increswrat Wiener
process. Then the vectaZ, has a Gaussian distribution. Now it is easy to
calculate the relationY,, = BAAZ,, where the matriced andB have the
forms

t 1 t
to t, O
A= -0 0 0oF
th 0O 0O 0 O
1 0 0
-1 1
B= _
0 -1 1

(i)
SincedeA =1t;-...-t, # 0,deB = 1 # 0, we know by Exercise 2.5,
thatAY,, is Gaussian vector. Since the sequertgenas arbitrary,
Y(t), t > 0 is a Gaussian process.
The last condition we have to verify Cok(), Y(s)) = min(t, s). Let
0 < s<t. Then Cov¥(t), Y(9) = E(tW(})sW(2)) = tsmin(%, 1) = tsi =
min(s, t). From the proof of Proposition 2.13 the increments of thecpss
Y(t), t > 0 are independent.

Exercise 2.7:Show thatX(t) = +tZ does not satisfy conditions 2,3 of
the definition of the Wiener process.

Solution: Assume 0< s < t. Then we haveX(t) — X(s) = (Vt — V9)Z.
HenceE(X(t) — X(s)) = 0 and Vark(t) — X(s)) = E(X(t) — X(9))? = (t +
s—24/ts). The last equality contradicts Condition 2 in Definitiod 2f the
Wiener process.

To check condition 3 of Def. 2.4, consider the incremef{tg, 1) — X(tx),
k=1,...,m-1, wherety,; = (v/ix+1)% t; > 0. Thenf,: — ik = 1 and
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P(X(t2) = X(t2) < 0, ..., X(tm) = X(tm_1) < 0) = P(Z < 0) = % while

m-1

[ ] POXC) - X0 < 0)= PZ < O = ()™

k=1
So Condition 3 of Def. 2.4 is not satisfied.

Exercise 2.8:Prove the last claim - i.e.thatX, Y have continuous paths
andY is a modification ofX, then these processes are indistinguishable.

Solution: Suppose is a maodification oX andX andY have continuous
paths. LefTy = {ty : k= 1,2,...} be a dense, countable subset of the time
setT. We know that the setd, = {w; X(tx, w) = Y(tx, w)}, k=1,2,... have
P(A) = 1 or, equivalentlyP(Q \ Ay = 0. Now take the seh = N2 A«.
Since

P@\A) = P@\[)A) =P(_J@\A) < ) P@\A) =0,
k=1 k=1 k=1

we haveP(A) = 1. If wg € A, thenwy € Acforallk = 1,2,.... This
means thaX(t, wg) = Y(t,wp) for all t € Ty. SinceX(-, wp) and Y(-, wp)
are continuous functions anfi is a dense subset df, it follows that
X(t,wo) = Y(t,wp) for all t € T. But wg was an arbitrary element &
andP(A) = 1, so the processesandY are indistinguishable.

Exercise 2.9:Prove that IfM(t) is a martingale with respect #, then
E(M?(t) - M*(9)I5) = E(IM(t) - M()]*I75).
and in particular

E(M?(t) - M?(s)) = E([M(t) - M(9)]%).

Solution: The first equality follows from the relations

E([M() - M(9)]*F5)
= E(M2(t) + M%(9)|Fs) — 2E(M(S)M(1)|F5) (linearity)
= E(M2(t) + M%(9)|F5) — 2M(S)E(M(1)|Fs) (M(s) is Fs measurable)
= E(M2(t) + M%(9)|Fs) — 2M?(s) (M is a martingale)
= E(MA(t) — M?(9)|F).

The second equality follows from the first by the tower proper
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Exercise 2.10:Consider a process onQ = [0, 1] with Lebesgue mea-
sure, given byX(0,w) = 0, and X(t, w) = 1[0,%]((4)) fort > 0. Find the
natural filtrationF X for X.

Solution: The definitions of the probability space ([, B(]0, 1]), m),
m-Lebesgue measure, and the procésseld

Fo = {0,[0,1] ,for0<s<1
97 110.00.1.[0. 4, 2.1]) fors> 1.

This impliesF* = o(Uiss0 Fx(g) = {0,[0, 1]} for 0 < t < 1. In the case
t > 1 all intervals % é] =(1,1]1n[0, L], where 0< s, < 5 < 't, also
belong to7;*. Hence we must havB((, 1] c ¥ and then [01] € FX.
These conditions givg* = B((,1]) U B', whereB’ = {[0,1]\ A: A e
B((3, 1))}, because((2, 1]) U B’ is ac-field.

Exercise 2.11:Find M(t) = E(Z|FX) whereFX is constructed in the
previous exercise.

Solution: LetZ be a random function on the probability space {I0B([0, 1]), m)
such thatfo1 |Z|dm exists. We will calculate the conditional mean values of
Z with respect to the filtrationf*).-o defined in the Exercise 2.10.

From Exercise 2.10 we know that in the cdse 1 every setA € FX
either belongs taB((%, 1]) or it is of the formA = [0, 1] U C whereC ¢
B((%, 1]). Hence everyrX-measurable variable, includifig(Z|#,X), must
be a constant function when restricted to the interva%IQNhiIe restricted
to (3, 1] itis anF ((3, 1])-measurable function. Then from the definition of
conditional mean valu%o’%] Zdm = f[o’%] E(Z|7*)dm = ¢t and for every
A € B((+,1]) we have[, Zdm = [, E(Z|F*)dm. The last equality implies
E(ZIF) = Z on (%, 1] Finally

tffzdm forwelo,}]

X w) =
E(ZIF")(w) {Z(w) forwe (3,1]

a.e.inthe case> 1. In the casé < 1 E(Z|FX) = E(Z) a.e.

Exercise 2.121s Y(t, w) = tw— %t a martingale* as above)? Compute
E(Y(1)).

Solution: It costs little to compute the expectatici(Y(t)) = fol(tcu -
%t)dw = 0. If the expectation were not constant, we would conclude that
the process is not a martingale, however, constant exjpattagjust a nec-
essary condition, so we have to investigate further. Theingale condi-
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tion read<E(Y(t)|F) = Y(s). Consider 1< s < t. The random variable on
the left is7X-measurableso since [0] is an atom of ther-field, it has
to be constant on this event. HoweVv¥(s) is not constant (being a linear
function ofw), soY is not a martingale for this filtration.

Exercise 2.13:Prove that for almost all paths of the Wiener procéss
we have sup, W(t) = +co and inf.o W(t) = —co.

Solution

SetZ = sup., W(t). Exercise 2.4 shows that for every- O the process
cW(;) is also a Wiener process. HerzandZ have the same distribution
for all ¢ > 0, which implies thaP(0 < Z < «) = 0, and so the distribution
of Z is concentrated of0, +oo}. It therefore stfices to show thaP(Z =
0) = 0. Now we have

P(Z = 0) < P(IW(1) < 0} n [ }{W(u) < O})
u>1

= P({W(1) < O} N {SugW(1 + t) — W(1)) = 0})
>0

since the procesg(t) = W(1 + t) — W(1) is also a Wiener process, so that
its supremum is almost surely 0 @ro. But (Y(t))0 and W(t))p,1; are
independent, so

P(Z = 0) < P(W(1) < 0)P(supY(t) = 0)
= P(W(1) < 0)P(Z = 0),

(asY is a Wiener process, supY(t) has the same distribution &3 and
soP(Z = 0) = 0. The second claim is now immediate, sined/ is also a
Wiener process.

Exercise 2.14Use Proposition 2.35 to complete the proof that the inver-
sion of a Wiener process is a Wiener process, by verifying-pantinuity
att=0.

Solution: We have to verify that the process

W(3 f
v(t) = tW(;) ,fort>0
0 ,fort=0

has almost all paths continuous at 0. This follows from Psiam 2.35,
since

— 0a.s. ift = oo.

tw(%) _ Wi%)
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Exercise 2.15:Let (r,)n-1 be a sequence of stopping times. Show that
sup, T, and inf, T, are stopping times.

Erratum: The claim for the infimum as stated in the text is false in
general. It requires right-continuity of the filtration, sisown in the proof
below.

Solution: supr, is a stopping time because for al 0, {supr, <t} =
Nnith < t} € F; as an intersection of setsdnfield 7.

The case of infr, needs an additional assumption.

Definition. Afiltration ()< is called right continuous ify, = Mg Fs =
Ft.

We now prove the following auxiliary result (see also lemm#&82n the
text).

Claim. If a filtration (F¢)i<t is right continuoust is a stopping time for
(Fo)iet if and only if for everyt, {t < t} € F.

Proof. If 7 is stopping time, then for evetyandn=1,..., {r <t - %} €
Fi1 C Fr. Hencelr <t} = (Upulr <t~ e lf {r <t} e Fforallt,
then{r <t} = (Nt <t+ i) e Fy = F.

This allows us to prove the desired resultzif)q.1 is a sequence of stop-
ping times for a right continuous filtratiotF).t, then int, 7, is a stopping
time for (Fo)ier

Proof. According to the clainr, are stopping times imply that for every
tandn, {t, < t} € ¥. Hence{inf,r, < t} = Uplth < t} € F for all t,
which, again by virtue of claim, filtration is continuousstidies, infr, is a
stopping times.

Exercise 2.16Verify that#; is ac-field whenr is a stopping time.

Solution 2.161. Becauser, is ac-field ,0 N {r <t} = 0 € ¥ for all t.
Then by the definition of, 0 € ¥,
21t Ae F,,thenAn{r <t} e F for all t,. HenceQ \ A)n{r <t} ={r <
t}\ (AN {r < t}) € #; (both sets are iff;). Sincet was arbitraryQ \ A € F..

3. If A, k=1,2,... belong tof, thenAy N {r < t} € F for all t. Now
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(Ua A) N{T <t} = Uga(Acn{r < t}) € F¢ for F is aco-field. Sincet
was arbitrary| i, A« € F-. 1.,2.,3. implyF; is ac-field.

Exercise 2.17Show that ifv < r then¥, c -, and thatF, ., = F,NF-.

Solution: If A e F, thenAn {v < 7} € F; for all t. From the assumption
vy < ritfollowsthat{v <t} > {r<tlandhencér <t} ={vr <tJn{r <t}
forallt. Now An{r < t} = (An{y < t})n{r < t} € F, asris a stopping time
and¥; is ao-field. ThusA € #.. For the equalityF, .. = ¥, N #,, note that
by the previous result the relationsr < v, vAt < Timply F,.. € F,NF~.
For the reverse inclusion take € 7, N 7,. henceAn {v < t} € ¥ and
An{r <t} e Fforallt. Since{lyv At <t} ={v <t} U{r <}, we have
AnfvAar <t} =(An{yr <t) U(ANn{r < t}) e F for all t becauser;
is ac-field. A was an arbitrary set, s, N ¥, C F,.. and hence the result
follows.

Exercise 2.18Let W be a Wiener process. Show that the natural filtra-
tion is left-continuous: for each> 0 we haveF; = o (s Fs). Deduce
thatifv, / v, wherev,, v areFV-stopping times, thear({_,., 7,V) = 7,".

Solution: Proof of the first statement:: For anys > 0 theo-field 7
is generated by sets of the forn= {(W(uy), W(up), ..., W(u,)) € B} where
B € B(R") and () is a partition of [0 5]. Now fix t > 0. By left-continuity
of the paths ofVV we know thatV(t) = limg ;t W(sy) a.s., the seA belongs
t0 o(Um-1 &) € o(Usq 7). So thiso-field contains the generators of
7, hence containg,". The opposite conclusion is true for any filtration
(F)0, SiNCEFs C F for s < t gives (Js; Fs) C Fr.

Erratum: The second statement should be deleted. The claim holds for
only for quasi-left-continuous filtrations, which involveoncepts well be-
yond the scope of this text. (See Dellacherie-Meyer, Pritibab and Po-
tential, Vol2, Theorem 83, p.217.)

Exercise 2.19:Show that ifX(t) is Markov then for any X t5 < t; <

Solution: We have to verify that the discrete proceXé()),n=1,...,N
is a discrete Markov process with respect to the filtratigp)(n = 0,1, ..., N.
Let f be a bounded Borel functioh: R — R. SinceX is a Markov pro-
cess, it follows thaE(f (X(tn.1))I7%,) = E(f(X(;,))|Fxq,) for all n. But this
means thatX(t,)), is a Markov chain (a discrete-parameter Markov pro-
cess).

Exercise 2.20:Let W be a Wiener process. Show that foe R, t > 0,
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M(t) = explixW(t) + %xzt} defines a martingale with respect to the natu-
ral filtration of W. (Recall from [PF] that expectations of complex-valued
random variables are defined via taking the expectationseif teal and
imaginary parts separately.)

Solution: Recall thatz : Q — C, whereC is the set of complex num-
bers, is a complex-valued random variabl@ it X; + iX, and Xy, X, are
real-valued random variable&.has mean valu&Z if X;, X have mean
values andEZ = EX; + iEX,. If G is a o-subfield of # we also have
E(ZIG) = E(X1|G) + IE(X2|G) when E(t)); is a complex valued process
(martingale) if Xy, X, are real processes (are real martingales for for the
same filtration) and(t) = Xy (t) + i Xx(t).

Now for Exercise 2.20 take & s < t and denoté (u,v) = XU+%%
whereu,v € R. Let ReF(u,v) = Fi(u,v) and ImF(u,v) = Fy(u,v) be
the real and imaginary parts B{u, v). Write Y = W(t) — W(s), X = W(s),
FI = G. We prove that ({(t)); is a martingale for{ ). Using our notation
we can write

EMM(@)IF") = E(F(W(s), WD) — W(9)I7<")
= E(F1(X. V)IG) + IE(F2(X. V)IG).

The variableY is independent of the~-field G, X is G-measurable and
the mappingsF1, F, are measurable (continuous) and bounded. So we
have:E(F1(X,Y)IG) = Gi(X), E(F2(X,Y)IG) = Ga(X) whereGy(u) =
E(F1(u,Y)), Go(u) = E(F2(u,Y)). SettingG = G; + iG, we have the for-
mulaE(M(0)IFY) = G(X) whereG(u) = E(F(u,Y)) = E(e*XuM+2¢ty =
gx+3¥tE(eXY) Since the distribution function of is the same as that of
W(t — ) and E(e”M9) is nothing other than the value atof the char-
acteristic function of amN(0, t — s)-distributed random variable, we obtain
E(€¥) = e 29 [PF]. HenceG(u) = €%  Finally, E(M(t)|FY) =
g@W9+s¢ = M(s). Since 0< s < t were arbitrary §(t)); is a martingale.
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Chapter 3

Exercise 3.1:Prove thaWw andW? are in M2.

Solution: W, W? are measurable (continuous, adapted) processes. Since
E(W2()) = t, B(W4(t)) = 3t? (see[PF]), by the Fubini theorem we obtain

E( fo ' Wz(t)dt): fo ' E(WA(t))dt = fo ' tdt = T;

E( fo ' vv“(t)dt) = fo ' E(W4(t))dt = fo ' 3t%dt = T3,

Exercise 3.2:Prove that in generdl f) does not depend on a particular
representation of.

Solution: A sequence @&ty <t; <...<t,=Tiscalled a partition of
the interval [QT]. We will denote this partition by (t;). A partitionT (uy)
of [0, T] is a refinement of the partitiof (t) if the inclusion{t;} c {uy}
holds. Letf be a simple process on,[D], f € S?and letf (t;) be a partition
of [0, T] compatible withf. The latter means th&t can be written in the
form

n-1
f(tw) = &o(@) 1o ®) + ) &(@)Lgu.a0),
i=1

whereé, is 7, measurable ang € L2(Q). Note thatf (t;,1) = & fori > 0.
To emphasize the presence of the partition in the definitfidheintegral
of f we also writel (f) = l;)(f). If a partitionT (uy) is a refinement of a
partition? (t;) and? (t;) is compatible withf, thent (uy) is also compatible
with f. This is because for eaclthere existk(i) such that; = uy;. Since
f(t) = f(t,1) = & fort < t < tiyq, it follows that f(u) = f(ti1) = &
and f(u) € Fi C Fu for all k such that; = Ugi) < Uk < Ugier) = Tiga.
Additionally,

=

o
€0l + D F(Ue) g (®)

k=0
1

= &olo(t) + ) [ D fil(uk,uk+11(t)]= f(t).

i=0 \k(i)<k<k(i+1)
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Now for the integral off we have

=

Ly (F) = > T (Uke1) (W(Uik1) — W(U))

©

TT
)

- DL EW(U) - W(u)
i=0 \k(i)<k<k(i+1)
n-1
= ) &(W(tii) — W(E)) = Ly ().
i=0
Returning to our exercise 16t (t;) and? (s;) be partitions on [0T] com-
patible with f. We can construct the partitian(v), where{v,} = {ti} U {s;}
and elementsy are ordered as real numbers. Then the partitigw,) is a
refinement of both partition$ (t;) and? (s;j). By the previous results we
havelyq)(f) = Iy (f) = lys)(f). Thus the It0 integral of a simple process
is independent of the representation of that process.

Exercise 3.3:Give a proof for the general case (i.e., linearity of the
integral for simple functions).

Solution: We prove two implications.
1.1f f € S?, @ € R, thenaf € S?, I(af) = al(f).
2.1f f,ge S? thenf + ge S, I(f +q) = I(f) + 1(g).
Proof 1. If f(t) = é‘:OllO)(t) + Zln:_(} fil(ti,ti+1](t), Wherefi € 7:ti’ theafi € 7:ti
andl(af) = 5 o&(W(tia) -W()) = a S &(W(t.1) - W(L)) = oI (f).

Proof 2. We use the notation and the results of Exercise 82 [f;) and
T (sj) be partitions (of the interval [0']) compatible with processesand
g respectively. We can construct a partitipivi) which is a refinement of
both? (t) and? (s;) (as was shown in Exercise 3.2). Thér g € S? and

() +1(9) = L) (F) + 1) (@) = hwo (F) + lwo (9) = Lo (F +9) = I(f +0).
Exercise 3.4:Prove that forfaID f(t)dWI(t), [a,b] c [0, T] we have

b b b
E f f()AW(D)] = 0, E[( f f(OAW(D)?] = B[ f £2(t)dt].

Solution: Since forf € S?the procesg;a, b]- f belongs tas?, it follows
thatB( [ f dW) = E( [ Ljar f dW) (definition) = O (Theorem 3.9). Simi-
larly B([ f dW)? = B( [} Liar f dW)? (definition)= E( [, Lap F2dt)(Theorem
3.10)= B([.’ f2dt).
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Exercise 3.5:Prove that the stochastic integral does not depend on the
choice of the sequendg approximatingf.

Solution: Assumef € M? and let (f,) and @,) be two sequences ap-
proximatingf. That is f,, g, € S? for all n and]E(fOT(fn - f)2dt) — 0,
Nn—oo

E(fOT(f — gn)?dt) — 0. The last two relations imply, by the inequality
(a+b)? < 2a2 + 22,

E(fOT(fn —gn)zdt) < ZE(fOT(fn - f)zdt)
+2E(fOT(f —gn)zdt) —0

By assumption, the integral$gy), | (f,) exist and there exist lim,., 1(fn)
and lim,_,. 1(gn) in L?(Q).
We want to prove that lig,. [ (f,) = limp_e 1(gn). Now

T 2
B((1(F) - 1(@)?) = E[( fo (fal0) - gn(t)odW(t)) ]
(linearity in S?)

;
= E(f (falt) - gn(t))zdt) (isometry inS?) — 0 asn — oo.
0

That last convergence was shown above. Thugligd (f,) = limp_e 1(9n)
in L2(Q)-norm.

Exercise 3.6:Show that

f t sdW(s) = tW(t) - f t W(s)ds.
0 0

Solution: We have to choose an approximating sequence for our inte-
grals and next to calculate the limit of Itd integrals foe tapproximating
sequence. Denoti(s) = sand takef,(s) = Y} 1(%,%31(5)% forO<s<t,
fa(0) = 0. Thenf,are simple functions anf} € S? (they do not depend on
w). (fn) is an approximating sequence fbbecausgf,(s) — f(s)| < + for
all 0 < s < t. This inequality givesE([[(f(9) — fa(9)ds) < 5t — O as
n — co. Now we calculate lim.,, I (f,). According to the definition of the
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integral of a simple function

S )

— tW(t) — W(:)—>tW(t)+fW(s)ds ae

i=1

This holds because for almost all W(-, w) is continuous function and
iy %W(%) is a Riemann approximating sum for the integraMéf, w).
Convergence with probability one is notfBaient. We need the conver-
gence inL?(Q) norm. We verify the Cauchy condition to prok&Q)-norm
convergence ofl(f,)):

E((1(f) = 1(fm)?) = E((1(fa = fw))?) (linearity in S?)

—E(( f (f(s)—fm(s))dW(s))] ( f (f, (s)—fm(s))zds)

(It6 isometry).

Sincef, — f in L2([0, T] x Q) norm, it satisfies the Cauchy condition.
The Itd isometry guarantees that the sequence of integlsissatisfies the
Cauchy condition in_?(Q2). Then ((f,)), converges irL2(Q)-norm. But
the limits of a sequence convergent with probability one anthe same
time convergent i.?(Q)-norm must be the same. Thus

H(F)(9) = (lim 1(fn))(s) = tW(t) - fot W(s)ds.

Exercise 3.7:Compute the variance of the random variaﬂe{W(t) -
t)dW(t).

Solution: In order to calculate the variance of a random variable we
need its mean value. Denote liyan approximating sequence for the pro-
cessf(t) = W(t) — t. From the definition of the Itd integr&(f,) — 1(f) in
L2(Q)-norm. We have the inequalities

[E((F)) = E((f)) < E(I(f) = 1(f))]) < (Schwarz inequality)
E((1(f) = 1(f,))?) = 0 asn — co.

SinceE(I(f,)) = 0 for alln (Theorem 3.9), it follows thai(I (f)) = 0. Now
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we calculate
i
var(1(f) = E(1())?) (B(1(F)) = 0) = E( [ f2(t)dt)

(Itd isometry)= f T]E(W(t)—t)zdtz f T(JE(WZ(t))+t2)dt
0 0

T T2 T8
- Ndt = — + —
_fo(t+t)dt_2+3.

Exercise 3.8:Prove that iff, g € M? ande, 8 are real numbers, then

[(af +B9) = al(f) + BI(g).

Solution: Let (f,) and @,), f., g, € S? be approximating sequences for
f andg, respectively and fix,, 3 € R. This givesef, — «f, fg, — B9
in L2([0, T] x Q)-norm. Hence the sum of these sequencels ¢ 5g,)
converges in.2([0, T] x Q)-norm toa f + g and of course f,, + g, € S2.
So the sequence f, + 8gn) is an approximating sequence for the process
af + Bg. From the definition of integral follow the relations

I(afq+ Bgn) — (af +Bg)
and

I(af, + B9, = (linearity in S?)
al(fn) +Bl(gn) — al(f) +B1(9)

in L2(Q)-norm. Since the limit of a sequence in a normed vector sjsace
determined explicitly, it follows that

al(f) +BI(g) = I(af + B0).
Exercise 3.9:Prove that forf e M?,a<c<b,

f i f()dW(s) = f i f()dW(s) + f i f(S)dW(s).
a a b
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Solution: Leta < c < b. Then

C b T

fa F()dW(s) + fc F(9)dW(s) = fo £(9)Ljaq(9AW(S)
T T

+ f H(9) Loy (AW(S) = f (F(9Lag(9) + (9o (9)IW(S)
0 0

T
(inearity)= [ (F(9Laa(®) + TS LM

T b
- [ 9t = [ fgaw.
0 a

Note that a change of value of an integrand at one point hasfhence
on the value of the integral. For example, I&f)(be an approximating se-
quence forf € M2 and let 0=t <t < ... < t{) = T be the partition
for f,. Then

E((1(f) = 1(falom)?) = E((FO)W(E") - W(0)))?)
= E((F(Q)B(WA(L")I70)) = E(f2(0))E(WA(ty))
(WA(ty) independent of) = E(F2(0))t" —0.

Exercise 3.10:Show that the processI(t) = fotsin(\N(t))dW(t) is a
martingale.

Solution: Let be 0< s < t. We have to prove the equality

E( fo tsin(\N(u))dW(u)lTS) = fo " Sin(W(U)dW(U).

Beginning with the equality
f tsin(\N(u))dW(u)) = f ssin(\N(u))dW(u)
0 0
+f sinW(u))dW(u) = n + &

We see that to solve the problem it is enough to show EfaltFs) = n
andE(£Fs) = 0. The first equality means thatshould be anF; mea-
surable random variable. To prove it lét), f, € S? be an approximat-
ing sequence for the procedson the interval [0s]. Then (sin,)), is an
approximating sequence for i and of course sirff) € S2. The inte-
gralsn, = I(sin(f,)) converge inL2(2) norm ton and they are of the form
o = S LOWE™) - wit™)) wheret® < sandp®™ e Fo € Fs.

Thenn, are ¥s-measurable variables and as a consequgmast be an
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Fs measurable variable. For the equali¢|Fs) = 0, let @n)n, On € S?,
On = 1isq0n be an approximating sequence for the prod&sen the in-
terval [s,t]. Then similarly as in the previous cagg = (15 Sin(@n))
are of the form¢, = ¥!'; LEDW(ST)) - W(S™)) whereg” € F o and
]

s < sﬁ”) < tfor all j andn. These conditions and the definition of Wiener
process\ adapted to the filtration#,) give the variablanv(s?,) - W(s!”)
is independent of the-field 7 for all s™ andn. This property and the

]
fact thats" € o implies that

]

-
E(£nl7) = IZIE@“‘) (W(s) - W(s))IF)
j=1
and further
(& (W(S?,) - W(S))IF)
= B(E(E"(W(S?,) - W(S))I7 0)|s) (tower property)
= BE"BW(S,) - W(s(m)m)m)
= BE"BEW(ST,) - W(s(”>))|7;) (|ndependence)
= B(W(s]),) - W(S")E(EIFs) =

for all j,n because&(W(s";) - W(s)) = 0. ThusE(&|7<) = 0 for all
n. The convergencsg, — & in L2(Q)-norm impliesE(&,|Fs) — E(£]Fs) in
L*(Q) (see [PF]). The last rest#((E(£]75))*) = O givesE(¢|Fs) = 0 almost
everywhere. The proof is completed.

Exercise 3.11For eactt in [0, T] compare the mean and variance of the
[t integral fOT W(s)dW(s) with those of the random variabﬁW(T)z—T).

Solution: We haveiE(foT W(s)dW(s)) = 0 (Theorem 3.14). As a conse-
qguence

Var ( f(; ' W(s)dW(s)) = E{( f(; ! W(s)dW(s))z]
E(fOT Wz(s)ds) (isometry) = fOT E(W?(s))ds = fOT sds = T;

For the second random variable we obtain

E(%(WZ(T) - T)) = % (BWA(T) -T) = % (T-T)=
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and so

Var (%(WZ(T) - T)) = %Var (Wa(T)) = %(E((WZ(T))Z) — (B(WA(T)))?)

=

_ 1 4 2\ _ 2 2\ _
= 21(JE(W (T)-T?) = Z(BT -T?) =+

Exercise 3.12Use the identity a(b—a) = (b?>—a?) - (b-a)? and appro-
priate approximating partitions to show from first prinei;;thatfoT W(s)dW(s) =
Z(W(T)?-T).

Solution: Since the procesd/ belongs toM?, we know that the inte-
gral of W exists and it is enough to calculate the limit of integralsda
approximatingV sequencef(),. We takef,, n=1,... given by the parti-
tionst™ = T,i=0,1,...,n-1. So we havé(t) = 3/ W(ti‘”))l(ti(m,ti@l](t),
f.(0) = 0,n=1,2,.... Itis easy to verify thaf, — W in L2([0, T] x Q)-
norm. Using our hypothesis about lim, I(f,) we see that it is necessary
to prove thatl (fy) = X0 WE”)W(ET) - W(E™)) — S(WA(T) - T) in
L2(Q)-norm. The identity a(b — a) = (b? — a%) — (b — a)? lets us write the
[td sum ofl(f,) as follows

1 n-1 . . 1 n-1 . .
() = 5 D (WPED) — WAE™) = 5 D (WD) - Wit™)?
i—0 i=1
_lwem ot
= 2W (T) 277n
wheren, = SHWE™)-W(t™))2 Then itis stiicient to show thak(r,
T)2 — 0. SinceB((W(t™)-W(t™))?) = EWA(L™, -t™)) (the same distributions)
E(WA(1)) = I, we obtainE(n,) = T. Hence
n-1
E(p, — T)? = Var(n,) = Z Var (W(t™) — W(t™))?) (independence)
i=0
n-1 n-1 T
_ 204 _ () stributi 2(
= 2. Var(We(t”, —t)) (the same distributions) ; Var (W (n ))
_ (TN (2 (w2 (IO ) = n(3(TY - (TY
=z (w (@) @) =) - ()
2 2
= —_— 0
n

asn — oo. The proof is completed.
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Exercise 3.13:Give a direct proof of the conditional Itd isometry (The-
orem 3.20) : iff € M?, [a,b] c [0, T], then

b b
(| f F(AW(S]2T2) = E( f £2(9dsi7)

following the method used for proving the unconditionalikdmetry.

Solution: (Conditional 1td isometry.) The proof has two steps. Irpste
1. we prove the theorem fdr € S2. In this case, lea =ty < t; < ... <
t, = b be a partition of § b] and let f be of the formf(t) = &1a(t) +
Sheo éklren (1), where, fork < n, & is an, -measurable variable. Then
we can calculate similarly as in Theorem 3.10

b 2 n-1 2
E[[ f f(s)dW(s)] m]:EHZ@(W(tk+1)—W(tk))] m]
a k=0

n

= N E([fk(W(tk+1) - W(tk))]zlﬂ)
0

=

P

+2 ) B&EW(b:1) - W) (W(ters) — WE]IF) = A+ 2B,

i<k
ConsiderA.We have

E(E2(W(tr1) — W(t))?)IF2)
= B(B(&5(W(ti1) — W(t))?173,)IFa) (tower property)
= BEE[(W(tk1) — W())*IF]IT) (£ is Fi -measurable)
= E(E(E[W(tkr1) — W(t)]?)IF) (independence)
= BE((W(tk.1 — t))E(£2|F2) (linearity, the same distribution)
= (ter — WE(ELIFR) = BE (tke — )IF)-

This proves that

n-1 n-1
A= k; E(¢2(tksr — t)|Fa) = JE(I;0 Xt — 1)IF2)

= E(fab fz(t)dtlﬂ).
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Now for B we have

E(&ié&(W(ti+1) — W())(W(t1) — W(t))IFa)
= B(E[& &(W(tii1) — W) (W(tkr1) — W())IF, ]1Fa)
(tower property) = E(&i&i(W(ti1) — W(t))
EWI(tr1) — W(t)|F)|F2) (terms fori < k areF, -measurable)= 0

becaus&V(ix,1) —W(t) is independent of the-field F, henceE(W(ty,1) —
W(t)IFt) = E(W(tk,1) — W(tk)) = 0. Hence als® = 0.

Step 2. The general case. Let bec M? and let (f,) be a sequence of
approximating processes foion [a, b]. Thenf, € S2, n=1,2,...and||f -
fall2(abjxq) > 0 @asn — co. The last condition implie#l (1;a ) fo)ll2@) —
0.

Now we will want to utilize the conditional isometry fdf, and to take
the limit asn — . This needs the following general observation.
Observation. Let (Z,) be a sequence of random variables on a probability
space @', 7', P) and let¢ be a subo-field of 7. If Z, € LY(Q), n =
1,2,...andZ, — Zin LY(Q)-norm, therE(Z,|¢) — E(Z|¢) in LY(Q)-norm.

Proof. First note thaE(Z,|¢), E(Z|) belong toL(Q).
Now we have

E(IE(Zn1¢) — E(ZI2))) = E(IE(Zn — ZIZ)))
< E(E(Z, - Z|I)) =E(Z, - Z]) » 0ash — oo .

To use our Observation we have to verify thg[, 5 f.)]> — [ (Lar f)]?
and [ (Lian f)2ds — [ (Lap f)2ds in LL(Q)-norm. The following rela-
tions hold

E(I[1 (Lap f)]% = [1 (Lar) 17 = BUI Qagy (o = ) Lag (Fa + )
< E(1 (Lar (2 = D) E[ (Lan(fa + £))]12)? (Schwarz inequality)
T T
~ ([ Tt~ 109) @[ L+ 17d9)? (isometry)
0 0

=Ifn - f||L2([a,b]><Q)||fn + f||L2([a,b]><Q) -0

asn — oo because the second sequence is bounded. For the second se-
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guence we have similarly
T T
E| f Lo (12 = F2)ds] < B f ey (Fa = F)lidan(fa + Fids)
0 0

< (E( fo L - F2d8)} (& fo (o + 1d9)?
= |Ifn = flleqanxll fn + flliqapxe — 0 asn — co.
Thus we have by our Observation that
E([ (Laty f)]?1Fa) = E([1 (Lan F)1°172)
and

T T
E( f Loy F20S72) — E( f Loy F20S72)
0 0

in LY(Q) norm. Hence and from the equality

|
B(0I (Liay T)PI7) = E( fo Loy F2dS72)

valid for all f, € S2, we can obtain the final result.

Exercise 3.14Showf0t g(s)ds = Oforallt € [0, T]impliesg = 0 almost
surely on [QT].

Solution: Denote byg" andg™ the positive and the negative parts of
g. Theng" > 0,g > 0 andg* — g = g. The assumption abowg
implies fab gt (s) = fab g () = 0 for all intervals p,b] c [0, T]. Write
vi(A) = [,g°(9ds v (A) = [, g (s)ds for A € B([0, T]). Of coursey-
andv* are measures of3([0, T]) and the properties of" andg- give
v*([a,b]) = v ([a, b]) for every interval g, b]. Since intervals generate the
o-field B([0, T]), we must have*(A) = v~(A) for all A € B(]0, T]). Sup-
pose now that the Lebesbue measure of theéseg(x) # 0} = {x: g*(X) #

g (X)} is positive. Then the measure of the Bet {x: g*(x) > g (X)} (or
the set{x : g*(X) < g~(X)}) must be also positive. But this conjecture leads
to the conclusion

Y(B) = v*(B) v (B) = f (@ —g)ds>0

which contradicts the assumptio(®) = 0 for all A € B([0, T]).
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Chapter 4

Exercise 4.1:Show that for cross-terms all we need is the fact W) —t
is a martingale.
Solution: We need to calculate = E(F”(W(t;))F” (W(t;)) % X;) fori <

i, whereX, = [W(tx,1) = W(t]? - [tx.1 — t]. As in the proof of Theorem 4.5,
(Hurdle 1-Cross terms) we haw = E(F”(W(t))F" (W(t;)) X E(X||77,))-
So we calculaté&(X;|Fy,). Itis possible to write it in the form

E(X{1F7) = E((WA(tj 1) — tjeallF ) — 2W(E)E(W(t}.1)IF,)

+WA(t) + tj (W(t;) is 7 -measurable)

= Wz(tj) - t]‘ - 2W2(tj) + Wz(tj) + tj =0

(WA(t) — t, W(t) are martingales)

Hence alsdd = 0.

Exercise 4.2:Verify the convergence claimed in (4.3), using the fact that
guadratic variation oW is t.

Solution: Actually we have to repeat the calculus done for the quadrati
variation of W. As in the previous exercise wribg = (W(t.+1) W(t))? -
(i —t),i =1,...,n—1. SinceE(X) = 0 and henc&(}[ X.) =0, and
sinceX;,i =1,...,n— 1 are independent random varlables we have

3
H

> B(W(ki1) ~ W) - (t.ﬂ—t)z)—ZExz

HO

n-1

Var(X) (E(X)=0) = Var(Z Xi) (X are independent)

3

Z X)?) (E(Z X;) = 0) = E[((Z(W(t.ﬂ) W(t))?) - )]
= E((v[o,t] (1)~ 1) — EWWIG) - t)Z) =

in L2(Q)-norm, independently of the sequence of partitions witlshmgo-
ing to 0 asn — 0. (See Proposition 2.2.)
Exercise 4.3:Prove that

t
™™ = inflt: f [f(s)lds > M}
0

is a stopping time.
Solution: The process$ — fo |f(s)lds has continuous paths and we can
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apply the argument given at the beginning of the sectionigealit is
adapted. For this we have to assume that the prob@sss adapted and
notice that the mtegraf0 |f(s)lds, computed pathwise, is the limit of ap-
proximating sums. These sums &femeasurable and measurability is pre-
served in the limit.

Exercise 4.4:Find a process that is ii? but not in M?.

Solution: If a process has continuous paths, it isfhsince the integral
over any finite time interval of a continuous function is fnitWe need an
example for which the expectaticmfoT f2(s)ds is infinite. Fubini’s theo-

rem implies that it is sfiicient to findf such thatfoT E(f2(s))dsis infinite.
Going for a simple example, €2 = [0,1] andT = 1. The goal will be
achieved ifE(f2(s)) = 2. Now E(f?(s)) = fol f2(s, w)dw so we need a ran-
dom variable, i.e. a Borel functioX : [0, 1] — R such thatfol X(w)dw =
1. Clearly, X(w) = $1jg(w) does the trick, sd (s, w) = t1pg(w) is the
example we are looking for.

Exercise 4.5:Show that the Itd procesbX(t) = a(t)dt + b(t)dw(t) has
guadratic variationX, X](t) = fo b?(s)ds.

Solution: Under the additional assumption ttﬁt b(s)dW(s) is bounded
the result is given by Theorem 3.26. For the general casg letmin(t :
fo b(s)dW(s) > n}, so that, writingM(t) = fo b(s)dW(s), the stopped pro-
cesaM™(t) is bounded (by). SinceM™(t) = fo 1j0.+,b(8)dW(s), [X™, X™](t) =
fot 10.+,10%(5)ds — fot b?(s)ds almost surely, becausg is localising.

Exercise 4.6:Show that the characteristics of an 1td process are unjquel
defined by the process, i.e. prove that Y impliesax = ay, bx = by, by
applying the 1td formula to find the form o(t) — Y(t))>.

Solution: LetZ(t) = X(t)-Y(t) and by the Itd formulaZz?(t) = 2Z(t)az(t)dt+
ZZ(t)bz(t)dW(t) + b2 (t)dt with a; = ax — av, bz = bx — by. But Z(t) = 0
hencef0 b2(s)ds = 0, all t, sob; = 0. This |mpI|esf0 az(s)ds = 0 for all t
henceaz(t) = 0 as well.

Exercise 4.7:Suppose that the 1td procedX(t) = a(t)dt + b(t)dW(t) is
positive for allt and find the characteristic of the procesgé3 = 1/X(t),
Z(t) = In X(t).

Solution: Y(t) = % =FX®),F() =1, F(x)=-3,F"(X) =

dY = ——Ladt - de(t) b2dt,

X2 5_3

Z(t) = In X(t), soZ(t) = F(X(t)) with F(x) = Inx, F'(X) = 1, F"(X) =
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1 1 11,
Exercise 4.8:Find the characteristics of efai + X(t)}, given the form
of the 1td procesX.
Solution: Let F(t, X) = explat + X} soF; = aF, Fx = F, F4x = F and
with Z(t) = explat + X(t)}, dX(t) = ax(t)dt + bx(t)dW(t) we have

dZ = azZdt + a,Zdt + byZdW(t) + %biZdt.

Exercise 4.9:Find a version of Corollary 4.32 for the case whetes a
deterministic function of time.

Solution: Let M(t) = exp{fot o(9)dW(s) — %fOtO'Z(S)dS} = exp(X(t)}
whereX(t) is 1td with ax = —%0-2, bx = o. SinceX(t) has normal distribu-
tion (o is deterministic)gM € M? can be show in the same way as in the
proof of the corollary and (4.16) is clearly satisfied.

Exercise 4.10:Find the characteristics of the proces¥X(t).

Solution: Let Y(t) = ™, ay(t) = —re ™, by(t) = 0, dY(t) = —re"'dt so
integration by parts (I1td product rule, in other words)egv

d[e"X ()] = —re" X(0)dt + e dX(t).

Exercise 4.11Find the form of the proces$/Y using Exercise 4.7.
Solution: Write dX(t) = ax(t)dt + by(t)dW(t), d(%) = ayy(t)dt +
by/v(t)dW(t) with the characteristics of given by Exercise 4.7:

1 11
Ay = —gray + —Wb%,

Y2 2
1
b]_/Y = —Wby.
All that is left is to plug these into the claim of Theorem 4.36

1 1. 1
d(X) = X(S) + X+ bby et
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Chapter 5

Exercise 5.1:Find an equation satisfied b{(t) = S(0) exgduxt + o W(t)}.

Solution: Write the process in (5.3) in the for®(t) = S(0) exgust +
oW} with us = ux — %0’2 and (5.2) takes the formdS(t) = (us +
%o-Z)S(t)dt + o-S(t)dW(t) so immediately

dX(t) = (ux + %O’Z)X(t)dt + o X(t)dW(t)
Exercise 5.2:Find the equations for the functions— E(S(t)), t +—
Var(S(t)).
Solution: We haveE(S(t)) = S(0) exgut} = m(t), say, sont(t) = um(t)
with m(0) = S(0). Next,| Var(S(t)) = E(S(t) — S(0)e")? = S%(0)e*! ("t —
1) = v(t), say and

V() = 2uS?(0)e¥ (€7t — 1) + 02S?(0)e* e
= [2u + o 2V(t) + o2 (t).

Exercise 5.3:Show that the linear equation
dS(t) = p(t)S(t)dt + o (t)S(t)dW(t)

with continuous deterministic functiopgt) ando-(t) has a unique solution

S(t) = S(0) exp{fot (,u(s) - %o-z(s)) ds+ fot o (s)dW(s)}.

Solution: For unigueness we can repeat the proof of Proposition 5.3 (or
notice that the cd@cients of the equation satisfy the conditions of Theo-
rem 5.8). To see that the process solves the equation, take

F(t, x) = S(0) exﬂft (,u(S) - %o-z(s)) ds+ X},
0
andS(t) = F(t, X(t)) with X(t) = [ o()dW(s). Now
Fit. %) = () ~ 50 OISOF (%),

Fx(t, X) = Fy(t, X) = S(O)F(t, X),
dX(t) = o (t)dW(t),
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so by the Itd formula we get the result:
ds(t) = (u-— %O’Z)S(O) exﬂft (,u(s) - %o-z(s)) ds+ X(t)}dt
0
+0-S(0) exd f t (,u(s) - %o-z(s)) ds+ X(t)}dw(t)
0

+%0'ZS(O) exp{fo (,u(s) - %o-z(s)) ds+ X(t)}dt
— uS(t)dt + rSHAW()

(We have essentially repeated the proof of Theorem 5.2.)

Exercise 5.4:Find the equation solved by the processWif) = X(t),
say.

Solution: TakeF(x) = sin(x), F’(x) = cosf), F”(x) = — sin(x) and the
simplest version of Itd formula gives

dX(t) = cosgV(t))dW(t) — %sin(\N(t))dt = V1- X20dW(t) - %X(t)dt

Exercise 5.5:Find a solution to the equatia@X = — V1 — X2dW+ %th
with X(0) = 1.

Solution: Comparing with Exercise 5.4 we can guegs) = cos{V(t))
and check that witlr (x) = cosx the Itd formula gives the result.

Exercise 5.6:Find a solution to the equation

dX(t) = 3X3(t)dt — X¥?(t)dW(t)

bearing in mind the above derivation@X(t) = X3(t)dt + X2(t)dW(t).

Solution: An educated guess (the ‘educated’ part is to sélve —F>/?
so that the stochastic term agrees, the ‘guess’ is td-usksome special
form (1+ax)™®, then keep fingers crossed that théerm will be as needed)
givesF(x) = (1 + $x)2 with F/(X) = ~(1 + 3% = —[F()]%, F(X) =
3(1+ 3X)* = 3F%(x) soX(t) = F(W(t)) satisfies the equation.

Exercise 5.7:Solve the following Vasicek equatia@X(t) = (a—bX(t))dt+
odW(t).

Solution: Observe thatl [*X(t)| = ag™dt + o dW(t) (Exercise 4.10)
hence

" X(t) = X(0) + a f t du+ o f t edw(u)
0 0
= X(0) + %‘(ebt ~1)+0o fo e™dw(u),
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so that
t
X(t) = e ®X(0) + E(l —e™)+oe™ f eMdwW(u).
0

Exercise 5.8:Find the equation solved by the proce€swhereX is the
Ornstein-Uhlenbeck process.

Solution: RecalldX(t) = uX(t)dt + ocdW(t), so by the Itd formula,
dX?(t) = 2X(t)dX(t) + o2dt = 2uX3(t)dt + 20 X(t)dW(t) + odlt.

Exercise 5.9:Prove uniqueness using the method of Proposition 5.3 for
a general equation with Lipschitz daeients (take any two solutions and
estimate the square of theirfidirence to show that it is zero).

Solution: Suppose

Xi(t) = Xo +f a(s, Xi(s))ds+f b(s, Xi(9))dW(s), i=1,2.
0 0
Then

Xa(t) - Xo(t) = f [a(u, X (W) - a(u, Xo(u))]du
+ f [b(u, X (W) — b(u, Xe()]dW(U)
0

and using & + b)? < 2a? + 2b? and taking expectation we get
f(t) := E(Xa(t) — Xo(t))?

t 2
<25 [ falu. () - au X))
0
t 2
25 [ 100 X6(0) - bu Xetl )
0
Using the Lipschitz condition foa, the first term on the right is estimated

by ZJE(fOt K[Xz1(u) — Xz(u)]du)2 and we can continue from here as in the
proof of Proposition 5.3.

It isometry and the Lipschitz condition férallow us to estimate the
second term by

2

2B ( fo [b(u, Xa(u)) — b(u, Xa(u))]dW(u)
=2 fo t E[b(u, X1(u)) — b(u, Xx(u))]?du

<2 f t K2E[X1(u)) — Xo(u)]?du
0
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Putting these together we obtafift) < 2K2(1 + T) fot f(u)du and the
Gronwall lemma implied (t) = 0, i.e. Xy (t) = X5(t).

Exercise 5.10:Prove that the solution depends continuously on the ini-
tial value in theL? norm, namely show that X, Y are solutions of (3})
with initial conditionsX,, Yo, respectively, then for all we haveE(X(t) —
Y(1))? < CE(Xo — Yo)?. Find the form of the constawt

Solution: We proceed as in Exercise 5.9 but the first step is

X(t) = Y(t) = X(0) - Y(0) + fo [a(u, X(u)) — a(u, Y(u))]du
+ f [b(u, X(u)) — b(u, Y(u))]dW(u).
0

After taking squares, expectation and following the santenasions we
will end up with

f(t) < 2B(Xo — Yo)? + 2K?(1+ T) f f(u)du
0

so after Gronwall
E(X1(t) — Xo(1))? < 2 exd2K2(1 + T)TIE(Xo — Yo)2.



