
Digital Logic Design: a rigorous approach c©
Chapter 4: Directed Graphs

Guy Even Moti Medina

School of Electrical Engineering Tel-Aviv Univ.

April 10, 2012

Book Homepage:
http://www.eng.tau.ac.il/~guy/Even-Medina

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

http://www.eng.tau.ac.il/~guy/Even-Medina

Directed Graphs

Definition (directed graph)

Let V denote a finite set and E ⊆ V × V . The pair (V ,E) is
called a directed graph and is denoted by G = (V ,E). An element
v ∈ V is called a vertex or a node. An element (u, v) ∈ E is called
an arc or a directed edge.

e10

v0

v1

v3
v2

v4

e3

e2

e0

v5

e5

e6

e7

e8

e9

e1

e4

v7 v6

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Directed Graphs

v0

v1

v2

e3

e2

e0

e8

e1

e4

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

paths

Definition (path)

A path or a walk of length ℓ in a directed graph G = (V ,E) is a
sequence (v0, e0, v1, e1, . . . , vℓ−1, eℓ−1, vℓ) such that:

1 vi ∈ V , for every 0 ≤ i ≤ ℓ,

2 ei ∈ E , for every 0 ≤ i < ℓ, and

3 ei = (vi , vi+1), for every 0 ≤ i < ℓ.

We denote an arc e = (u, v) by u
e
−→ v or simply u −→ v . A path

of length ℓ is often denoted by

v0
e0−→ v1

e1−→ v2 · · · vℓ−1

eℓ−1
−→ vℓ.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

path terminology

1 A path is closed if the first and last vertices are equal.

2 A path is open if the first and last vertices are distinct.

3 An open path is simple if every vertex in the path appears
only once in the path.

4 A closed path is simple if every interior vertex appears only
once in the path. (A vertex is an interior vertex if it is not the
first or last vertex.)

5 A self-loop is a closed path of length 1, e.g., v
e
−→ v .

To simplify terminology, we refer to a closed path as a cycle, and
to a simple closed path as a simple cycle.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

directed acyclic graph (DAG)

Definition (DAG)

A directed acyclic graph (DAG) is directed graph that does not
contain any cycles.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

directed graph terminology

We say that an arc u
e
−→ v enters v and emanates (or exits) from

u.

Definition (indegree/outdegree)

The in-degree and out-degree of a vertex v are denoted by
degin(v) and degout(v), respectively, and defined by:

degin(v)
△
= |{e ∈ E | e enters v}|,

degout(v)
△
= |{e ∈ E | e emanates from v}|.

Definition (source/sink)

A vertex is a source if degin(v) = 0. A vertex is a sink if
degout(v) = 0.

In circuits, sources correspond to inputs and sinks correspond to
outputs.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

DAG example

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3

e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

Is this a DAG? How many paths are there from v0 to v6? What is
the in-degree of v5? What is the out-degree of v4? Which vertices
are sources? sinks?

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

DAG properties

Lemma

Every DAG has at least one sink.

Corollary

Every DAG has at least one source.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

topological ordering

Order the vertices of a DAG so that if u precedes v , then (v , u) is
not an arc. This means that if we list the vertices according to this
order from left to right, then no arc will point to the left. Our main
application of topological ordering is for simulating digital circuits.

Definition (topological ordering)

Let G = (V ,E) denote a DAG with |V | = n. A bijection
π : V → {0, . . . , n − 1} is a topological ordering if (u, v) ∈ E

implies that π(u) < π(v).

Note that by contraposition, π(v) < π(u) implies that (u, v) 6∈ E .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

ordering is a permutation

A bijection π : V → {0, . . . , n − 1} can be represented by an
n-tuple (v0, . . . , vn−1) in which each vertex appears exactly once.
Such an n-tuple is called a permutation of the vertices.
Hence, topological ordering means that we are looking for a
permutation that satisfies a special condition.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

algorithm for topological ordering

notation:

Ev
△
= {e | e enters v or emanates from v}.

Algorithm 1 TS(V ,E) - An algorithm for sorting the vertices of a
DAG G = (V ,E) in topological ordering.

1 Base Case: If |V | = 1, then let v ∈ V and return (π(v) = 0).
2 Reduction Rule:

1 Let v ∈ V denote a sink.
2 return (TS(V \ {v}, E \ Ev) extended by (π(v) = |V | − 1))

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

algorithm correctness

Theorem

Algorithm TS(V ,E) computes a topological ordering of a DAG

G = (V ,E).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

example: longest paths in DAGs

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3

e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

longest paths

We denote the length of a path Γ by |Γ|.

Definition

A path Γ that ends in vertex v is a longest path ending in v if
|Γ′| ≤ |Γ|, for every path Γ′ that ends in v .

Definition

A path Γ is a longest path if |Γ′| ≤ |Γ|, for every path Γ′.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

longest paths in DAGs

If a directed graph has a cycle, then there does not exist a longest
path. Indeed, one could walk around the cycle forever. However,
longest paths do exist in DAGs.

Lemma

If G = (V ,E) is a DAG, then there exists a longest path that ends

in v , for every v . In addition, there exists a longest path in G.

Proof idea: (1) The length of every path in a DAG is at most
|V | − 1. (2) The number of paths is finite.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

computing longest paths: specification

Goal: compute, for every v in a DAG, a longest path that ends in
v . We begin with the simpler task of computing the length of a
longest path.

specification

Algorithm longest-path is specified as follows.

input: A DAG G = (V ,E).

output: A delay function d : V → N.

functionality: For every vertex v ∈ V : d(v) equals the length of a
longest path that ends in v .

Note: d(source) = 0.
“Delay Function”: application for bounding the delay of a
combinational circuit. Model circuits by DAGs, and the delay of
the output of a gate equals d(v) (if all gates have unit delays).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

example: delay function

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3

e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

algorithm: longest path lengths

Algorithm 2 longest-path-lengths(V ,E) - An algorithm for comput-
ing the lengths of longest paths in a DAG. Returns a delay function
d(v).

1 topological sort: (v0, . . . , vn−1)← TS(V ,E).
2 For j = 0 to (n − 1) do

1 If vj is a source then d(vj)← 0.
2 Else

d(vj) = 1 + max
{

d(vi) | i < j and (vi , vj) ∈ E
}

.

One could design a “single pass” algorithm; the two pass algorithm
is easier to prove.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

algorithm correctness

Theorem

Algorithm longest-path-lengths(V ,E) satisfies the specification.

Need to prove that d(vi) equals the length of a longest path
ending in vi .

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

algorithm correctness - cont.

Consider a node vj+1 that is not a source and a longest path Γ
that ends in vj+1. Let ℓ = |Γ|. Clearly, ℓ ≥ 1. Denote the vertices
and edges in Γ by

u0
e0−→ u1

e1−→ u2 · · · uℓ−1

eℓ−1
−→ uℓ = vj+1.

observation 1

If vi
e
−→ vj+1 is an arc in E , then i ≤ j and d(vi) ≤ ℓ− 1.

observation 2

The path Γ \ {eℓ−1, uℓ} is a longest path that ends in uℓ−1. In
particular, d(uℓ−1) = ℓ− 1.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

rooted trees

In the following definition we consider a directed acyclic graph
G = (V ,E) with a single sink called the root.

Definition

A DAG G = (V ,E) is a rooted tree if it satisfies the following
conditions:

1 There is a single sink in G .

2 For every vertex in V that is not a sink, the out-degree equals
one.

The single sink in rooted tree G is called the root, and we denote
the root of G by r(G).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

paths to the root

Theorem

In a rooted tree there is a unique path from every vertex to the

root.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

decomposition of rooted trees

The following claim states that every rooted tree G can be
decomposed into rooted trees that are connected to r(G).

claim

Let G = (V ,E) denote a rooted tree. Let {ri
ei−→ r}ki=1 denote the

set of arcs that enter the root r = r(G). Define the sets Vi and Ei

by

Vi
△
= {v ∈ V : there exists a path from v to ri in G}.

Ei
△
= {e ∈ E : the arc e emanates from a vertex in Vi \ {ri}}.

Then,

1 The sets V1, . . . Vk are pairwise disjoint and
V = V1 ∪ · · · ∪ Vk ∪ {r}.

2 The graph Gi
△
= (Vi ,Ei) is a rooted tree with r(Gi) = ri , for

every 1 ≤ i ≤ k.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

decomposition: example

G1 G2

r(G1) r(G2)

r(G)r

r1 r2

Figure: A decomposition of a rooted tree G into two rooted trees G1 and
G2.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Composing rooted trees

claim

If Gi = (Vi ,Ei) are disjoint rooted trees, for 1 ≤ i ≤ k, then the
directed graph G = (V ,E) defined below is a rooted tree.

V
△
= V1 ∪ · · · ∪ Vk ∪ {r}, where ∀i : r 6∈ Vi . (1)

E
△
= E1 ∪ · · · ∪ Ek ∪ {r(Gi) −→ r}ki=1. (2)

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Terminology

each the rooted tree Gi = (Vi ,Ei) is called a tree hanging
from r(G).

Leaf - a source node.

interior vertex - a vertex that is not a leaf.

parent - if u −→ v , then v is the parent of u.

Typically maximum in-degree= 2.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

Applications

The rooted trees hanging from r(G) are ordered. Important in
parse trees.

Arcs are oriented from the leaves towards the root. Useful for
modeling circuits: leaves = inputs and root = output of the
circuit.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©

