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Appendix A

Mathematical preliminaries

In this appendix we introduce some notation and mathematical background that we
will need throughout the book.

A.1 Notation
A.1.1 Universal and existential quantifiers

Definition A.1 The symbolv means “for all.” A statement such agx” followed by a
condition onx means that all values afsatisfy the condition. The symb8&imeans “there
exists.” A statement such agx” followed by a condition onx means that at least one
value ofx satisfies the conditiori]

A.1.2 Sets

Definition A.2 A setis an unordered collection of elements. Sets will be denoted by
symbols such aS andP. We will use the symbol$ and} to delimit the specification of

the elements of a set.

The symbole means “is an element of.” Two sets are equal if every element of the first is
an element of the second and every element of the second is an element of the first. The
set differenceS \ P is the set of those elements®that are not irP.

The symbolC means “is a hon-strict subset of,” which is to say that every element of the
first set is also an element of the second set, but we allow for the possibility of equality of
the two sets. IfP € S butP # S then we say thaP is astrict subsetof S. We use the
symbol symbolc to mean “is a strict subset of,” which is to say that every element of the
first set is also an element of the second set, but the sets are notequal.

ForexampleS = {1, 5, 2} is the three element set consisting of the numbers 1, 2,
5. The statement “& {1, 5, 2}” means that the number 1 is an element of the three
element sefl, 5, 2}, (which is a true statement.) The statemguf “C {1, 5, 2}"
means that the set consisting of the number 1 is a strict subset of the three element
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set{1, 5, 2}, (which is a true statement.) Also{l,5, 2} C {1, 5, 2}" means that
the three element sft, 5, 2} is a non-strict subset of the three element &5, 2},
(which is also a true statement.) Finall, 5, 2} \ {1, 3} = {5, 2}.

Definition A.3 We defineZ to be the set ointegers The sefZ.. is the set of non-negative
integers, whileéZ, . is the set of strictly positive integers.

We defineR to be the set ofeal numbers. The setR, is the set of non-negative real
numbers, whil&R ,  is the set of strictly positive real numbers.

We defineK to be the set ofomplex numbers O

Definition A.4 Given two set§ andP, theCartesian productSxPis the set of all ordered
pairs such that the first member of the pair is an elemeStarid the second member of
the pair is an element @ [104, section 1.1]. We writ&" for the set of all ordered lists
consisting ol (possibly non-distinct) elements 8f We say then-fold Cartesian product
of S with itself. We writeS™*" for the set of all ordered lists oh elements, each element
itself being a member @". We say them x n Cartesian product d with itself. Given

a collection of sets;, ..., Sy, the Cartesian product of them is the set of all ordered
lists, with each list consisting of elements&f k = 1, ..., n, respectively, and is written

Definition A.5 Then-fold Cartesian product dR, with itself is called thenon-negative

orthant and is denote®”} . Then-fold Cartesian product dk,., with itself is called the
strictly positive orthant and is denote®"} , . If M is a set theR™ is the set of all vectors
having entries indexed by the elements in theMer

A.1.3 Matrices, vectors, and scalars

Definition A.6 A vectoris an element of a Cartesian product of sets, typically a Cartesian
product of the fornR". We will usually think of the list that specifies the vector as being
arranged as eolumn of n entries or components We sometimes saya@lumn vectorto
emphasize this. We can also define@ vector to be a list arranged as a row of entries.

A matrix is an element of am x n Cartesian product and we can think of the list that
specifies the matrix as being arranged as:

e mrows ofn entries each, or
e n columns ofm entries each.

A particular entry of a matrix or vector will be indicated by one or more subscripts on
the symbol for the matrix or vector. By default, the subscripts are humbered consecu-
tively from 1. For examplex € R" will usually denote the vector consisting of the entries
X1, ..., Xn. However, we will occasionally depart from this convention if it is more conve-
nient to use non-consecutive numbering or to use other ways to list the entries of the vector.
We will usually represent the entries of the vector by enclosing them with square brackets,
X1
so that in our examples = | : |. Occasionally, we will represent a vector having two
Xn
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or three entries by enclosing them with round brackets and separating entries by commas.
For example(x, vy, 2) is a vector with entrieg, y, andz.

For a matrix, the first subscript indexes the rows while the second subscript indexes the
columns. Sometimes we will separate the first and second subscript with a comma to avoid
ambiguity. Thetranspose operator denoted by a superscrifit interchanges rows and
columns of a vector or matrixd

For exampleR x R = R? is the set of all ordered pairs of real numbers. Each

element ofR? is a 2-vector. The entries afe R? arex; andx,, so thatx = [2 }
The setR" is the set of all ordered lists of real numbers. Each elementif
is ann-vector. The seR" is also callech-dimensional Euclidean space, since it
generalizes our notion of three-dimensional space for which “Euclidean geometry”
applies. Moreover, fox € R", x" € R™*" is thetransposeof x; that is,x is a row
vector withk-th entry equal to th&-th entry of the column vectox.
The setR™" is the set of alim x n matrices of real numbers. Each element
of this set is a matrix. For exampl®&2*2 is the set of all 2x 3 matrices. For
A € R2<3, the entries ofA are indexed as follows:

A:[All A1 Al3i|
Ax1 Az Asz |’

For A € R™", AT s thetransposeof A; that is, AT is ann x m matrix with
Zk-th entry equal to th&e-th entry of A.

Definition A.7 A matrix A ¢ R™" is square if it has the same number of rows and
columns; that is, im=n. O

Definition A.8 The diagonal of a matrix A € R™" is the collection of entriedy,
k =1,..., min{m, n}, where mifm, n} means the smaller ofi andn. A diagonal matrix
is a matrix with:

e the same number of rows and columns (that is, a square matrix), and
e zero entries everywhere except on its diagonal.

O

Definition A.9 A matrix A € R™" is diagonally dominant if:

> 1 Akel,
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A matrix A € R™" is strictly diagonally dominant if:

VK Ak > Y Akl
£k
VK Ak > D A,
25k
O

Definition A.10 Let A € R"™" be a square matrix. We define tdeterminant of A,

denoted d€td), as follows. Ifn = 1 then detA) is the single entry in the matrix itself.

The determinant of an x n matrix A can be calculated as the sumroferms. Thek-th

term in the sum is given by the product of:

° (_1)k+1,

e Ak, and

e the determinant of thén — 1) x (n — 1) sub-matrix ofA obtained by deleting the first
row and thek-th column of A.

O

The definition of determinant leads to a recursive algorithm for calculating the
determinant having computational effort that increases with the factorigltbft
iswithn(n — 1)(n — 2) - -- 1, which we denotea!

We define some particular constant matrices and vectors in the following.

Definition A.11 Then x n identity matrix | € R™" is a diagonal matrix with ones on

the diagonal. We defink € R" to be thek-th column of the identity matrix; that is, the
vector with zeros everywhere except in #h entry, which has value 1.

We define0 and1, respectively, to be matrices or vectors of all zeros and all ones, respec-
tively. The dimensions dd and1 depend on the context. They will often hevectors of

all zeros and all ones, respectively.

A.1.4 Functions

Definition A.12 By f : S — P we mean thaff is afunction that takes elements from
thedomain setS and returns elements (function values) from thiege setP. That is, for
each elememnt € S there is a well-defined valué(x) € P. Sometimes we writd (e) for

f to emphasize that is a function. To define a function we must specify the value of the
function for each element of its domain.

In this book, we will always writef (x) for the value of the functiorf atx and

we will write f or f (e) for the function itself. That is, the symbdl(x) is nota
function: it is the value of the functiom, evaluated ak. Usually, we think of the

setsS andP as being disjoint; however, sometimes we may hHave P, S C P,

orP C S, or sometimes one of the sets may be a subspace of the other. (See
Definition A.51.)
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Definition A.13 Let f : S — P and suppose th&t C S. Then therestriction of f to S is
the function that is defined dhand which matche$ on this domain. We usually use the
same symbol for a function and its restriction and distinguish the two by comiext.

A.1.5 Alphabetical conventions

We will usually use Greek capital letters and italic Roman capital letters for ma-
trices (and matrix-valued functions) and usually use Greek lower case and italic
Roman lower case letters for vectors (and vector-valued functions.) We will use
both capital and lower case letters for scalars (and scalar-valued functions.) The
context will make clear whether a symbol stands for a scalar or stands for a vector
or matrix. If we define a vectox € R" say, then we will occasionally define the
corresponding capital letteX in this case, to be thdiagonal matrix inR™*" with
diagonal entries equal to the corresponding entries dhat is,X = diag{x,}. For

1 1 00
example, ifx = | 2 | e R®thenX = | 0 2 0| € R®>3. (TheMATLAB func-
3 0 0 3

tiondiag creates such a diagonal matrix from a vector.)

We will typically usually use Greek and italic Roman letters such, &, I" that
are near to the beginning of the Greek or Roman alphabetof®stantsandpa-
rameters; that is, scalars, vectors, or matrices that have entries that do not change
or are held constant temporarily. We will use italic letters sucli,ag h that are
further in to the Roman alphabet (and sometimes use their Greek cognates such as
¢, v, andn) for functions. We will occasionally not follow this convention. For
example, we will occasionally use and Q to stand for vectors, use, J, andK
to stand for functions, and use 7, p, andy to stand for parameters and vectors.

We will use italic Roman letters such gsk, £, N and the Greek letter for
counters. We will usé, ¢, and, occasionallyj andi, to index entries of vectors.

(We will usually, but not always, avoid indexing entries of vectors with the symbol
i to avoid confusion with the symbol for electrical current. In the discussion of
complex numbers, we writg’~1 instead of or j so that we can use the symbols
andj as counters.) The letters m, r, s will be reserved for the number of entries
in particular vectors.

We will typically use italic letters such as y, z that are near to the end of the
Roman alphabet and their Greek cognates for variables. The sytigatured
before a symbol for a variable will be used to denote a new variable that represents
a changein the value of the original variable. For example denotes a change
in X. The letterg, T, 6 and calligraphic letters such ak B, X, Y, Z will be used
in a variety of roles. An overline over or underline under a symbol for a variable
means a constant of the same dimension that represents a bound on the variable or
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function represented by the symbol. For examplexferR", the symbolx € R"
andX € R" represent constant vectors that are lower and upper bounsgs for

In some case studies, we need to distinguish sub-systems or components. We
will use arabic numerals and non-italic lower case letters such as.a, fp,g to
distinguish these components. These symbols should not be confused with the
corresponding italic symbols used for functions and vectors.

A.1.6 Superscripts and accents
We use superscripts and accents in several ways as specified in the following.

Definition A.14 To denote aroptimal or desired value of a decision vector satisfying
some criterion, we will use a superscrip{5-pointed star). For exampl&; will denote

an optimal value of the vector € R". We will occasionally consider the sensitivity of
an optimal value with respect to the parameterin these cases, we will abuse notation
slightly and re-interpretx* say, to be a function representing the minimizer of a problem
as a function ofy. We will use these conventions and natural generalizations of them
throughout the book without further comment.

Definition A.15 We will use superscript (asterisk) to represenbmplex conjugate O

For definitions and theorems, we will often need to refer to one or nypieal
vectors or matrices. To distinguish the vectors and matrices, we will use super-
scripts and accents. For example:

e X, X', andx” are three different vectors,
e X, X, andX, are three different vectors, and
e if ¢ € R then we might distinguish a vectaf for each possible value ef

If f:R" — R then we might distinguish a particular value or bound on the
range of f by adding a superscript or accent. For example, we will usually write
f* for the optimal value of a function, where optimal is defined according to some
criterion. As noted above, the individuebmponentsor entries of vectors are
denoted by subscripts, so thatandx, are thek-th components of the vectors
andx’, respectively.

Definition A.16 Let x, X’ € R". We define thevector relations =, >, >, <, and <,
respectively, by:

x=x) & (Xk=X,Yk=1,...,n),
x>x) & (Xx>xX.¥k=1...,n),
x>x) & (>X,¥k=1,...,n),
xX<X) & (X<X,Yk=1...,n),
x<x) & (Xx<x,Vk=1,...,n).
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That is, when a relation is used between vectors, the relation applies componeritwise.

Definition A.17 The set ofextended real numbersis the sefR U {—o0, co} [104, sec-
tion 2.3]. Wedefine—oo andoo to have the following properties:

Ve e R, —o0o<a<oo,
o+ 00 = 00,

o+ (—00) = —00.

An extended real function f onS € R" is a function that, for eack € S, either takes
on a value inR or takes on one of the special valueso or co [104, section 2.3]. That
is, for eachx € S, the value off (x) is an extended real number. We write tat S —
R U {—o00, 00}. O

We will be careful never tsubtractoo from oo, nor toadd oo to —oo: these
operations are not defined.

Definition A.18 We will use superscripts in parentheses to distinguish successive elements
of a sequence Usually, the sequences we consider will be the iterates produced by an
iterative algorithm. Thenitial guess for an iterative algorithm will be denoted with a
superscript0), such ax@; subsequent iterates will appeand®, x@, ..., x™,.... To
represent the set of all iterateix@, xD, .. .}, that is, the complete sequence, we will
write {x)}°° .

We use the superscript parentheses to avoid confusionexjibnentiation If we want

to represent the square g, for example, we will write(x)2, to clearly distinguish it

from xﬁz), which is the value of th&-th component of the second iterate of the sequence

3
{x<“>}§°=0. Naturally,(xliz)) is the cube of th&-th component of the second iterate of this
sequence.

Occasionally, we will need to consider an infinite sub-collection of elements of a sequence.
For example, we might consider the sub-collection consisting of all the elements with even
numbered iteration counttx@, x@ x@ 1. This is called asub-sequenceof the
sequencgx )} .

We will sometimes use superscript in parenthesis to distinguish elements of a finite collec-
tion.

O

A.2 Types of functions

We will classify functions by their functional form and by their properties. First,
we will consider linear, affine, and quadratic functional forms and then we will
consider polynomials and other functions.
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A.2.1 Linear, affine, and quadratic

Definition A.19 A functiong : R" — RMislinear if it is of the form:
vx € R", g(x) = AX,
for some fixedA € R™". A functiong : R" — R™ is affine if it is of the form:
vx € R", g(x) = Ax— b,

for some fixedA € R™" andb € R™. Recall that the/-th entry of Axis 3 p_; AgXk. In
other words, theé-th entry of Ax is determined by thé-th row of A and byx; namely, it
is the sum of the products of:

e the entries in thé-th row of A, and
e the corresponding entries in

Then:ge(x) = > p_q AckXk — by. O

Sometimes, authors use the word linear to refer both to linear and to affine func-
tions.

Definition A.20 A function f : R" — R is quadratic if it is of the form:

1
VX eR", f(x) = EXTQX-FCTX +d,
1 n n n
= EZZXKQWX‘JFZCKXKJFd’ (A1)
k=1 ¢=1 k=1
where:
° Q c Rnxn,
e ccR" and
e deR.
m|

The factor% in (A.1) is to simplify the functional form of the first derivative of the
guadratic function. (See Section A.4.3.1 for definition of the first derivative.) If
Q = Othen the function is linear or affine. We often have tthat O.

Definition A.21 A matrix Q € R™" is symmetric if VK, £, Qk¢ = Q. O

We can assume th& in (A.1) is symmetric because, if it is not, we can replace
it by Q@ = 2(Q + Q"), which is symmetric and yields the same value for the
function, as Exercise A.1 shows.
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A.2.2 Polynomial

Definition A.22 Let:

e D € Z, (Z is the set of non-negative integers; see Definition A.3), and
e ap,a1,...,ap € R,

and define the functiog : R — R by:

D
X, g0 = ) a0k,
k=0
This function is gpolynomial of degreeD in the single variablex. A polynomial is said
to be affine, quadratic, cubic, or quartichf = 1, 2, 3, or 4, respectivelyd

Linear, affine, quadratic, cubic, and quartic functions of a single variable are
special classes of polynomials.

A.2.3 Other special functions

Definition A.23 A function f : R" — R is additively separableif it is of the form:
n
VX e R F(x) = > fx).
k=1

wherefy : R — R,k = 1, ..., n. The function ismultiplicatively separable if it is of
the form:

n
vx € R", f(x) = ]_[ fie (X
k=1

That is, a function is additively separable if it can be expressed as the sum of
functions that each depend only on one entrxofA function is multiplicatively
separable if it can be expressed as the product of functions that each depend only
on one entry ofx. There are various other notions of separability. For example,

a function is partially separable if it can be expressed as the sum of functions that
each depend only on a particular sub-vectox.of

Definition A.24 A functionn”" : R — R is monotonically increasingor monotonically
non-decreasingf:

VX, X € R, (x < X) = (" () < 07 (X)).
It is strictly monotonically increasing if:

vx, X e R, (x < X) = 7' (x) < 7" (X)).
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Similarly, a function; ™ : R — R is monotonically decreasingor monotonically non-
increasingif:

VX, X €R, (X < X) = () = 0¥ (X))
It is strictly monotonically decreasingif:
vx, X' € R, (x < X') = (X)) > n > (X)).

O

The superscripts” and are meant to graphically indicate the nature of mono-
tonic functions. We can refer top”" as “eta-up” and refer tg ™ as “eta-down”

as mnemonics for their properties. Figures A.1 and A.2 show a monotonically
increasing and a strictly monotonically increasing function, respectively.
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Definition A.25 LetS €S € R", P € R', andr : P — S. (Recall thatr : P — S means
thatz (&) is defined for eacl € P and thatvé € P, t(¢) € S.) We say that isonto S if:

VX € S, 3¢ € P such thax = 7(§).
We say that is one-to-one(or 1-1) if:
VEE eP (£ #£E) = (T@) #TE).
a

Definition A.26 We say that there is -1 and onto correspondencéetween two set®
ands if:

37 : P — S such that is 1-1 and onto

O

Definition A.27 If 7 : P — Sis 1-1 and onto then thiaverset 1 : S — Pis defined by:
vx € S, T7(x) is the unique elemergt € P such thatr (£) = x.

O

If r : P — Sis 1-1 and onto then its inverse! : S — Pis also 1-1 and onto.

A.3 Norms

We define a measure of the length of a vector that generalizes our notion of length
in space. This measure is callecharm [104, section 10.1]. We then define the
notion of the norm of a matrix.

A.3.1 Vector

Definition A.28 A norm (or vector norm) onR" is a function,||e| : R" — R, with the
following properties:
(i) ¥x eR" [Ix]| =0,
(i) Yx e R", (x| =0) & (x =0),
(i) vx,y e R [Ix+yl < IxIl +lyl,
(iv) Vx € R", Vo € R, x| = || [IX]|.
O

The most familiar example of a norm &' is the Euclidean length, usually
denoted|e ||, and defined by:

n

VX e R IIxll; = | Y (%02
k=1
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X+Yy
y Fig. A.3. lllustration  of
the triangle inequality in
> two dimensions.

This norm is also called the, norm and is the same as our intuitive notion of
length in 1, 2, or 3 dimensions. Property (iii) of a norm is called titengle
inequality because it says that the sum of the lengths of two sides of a triangle
exceeds the length of the other side. The triangle inequality is illustrated=fo2
in Figure A.3. In this figure, the sum of the lengths of the vertical and horizontal
sides of the triangle exceeds the length of the oblique side. The same observation
applies for each of the other two pairs of sides. Properties (iii) and (iv) imply that
a norm is a continuous function. (See Definition A.35 and Exercise A.8.)

There are many other norms, such as:

e thelL; norm |le|; defined by:

n
VX e R Ixlly =Y Ixl,
k=1

e the L, orinfinity norm | el ., defined by:

k=1,...,n
and
e weighted normsje|,, defined in terms of a non-singular weighting matrix (see
Definition A.49)W € R"" and any other norrfje|| onR" by:

vx € R", [IXllw = IWX] .

The choice of norm depends on the application. However, for any npethand
|e|l” onR", there are constanks ¥ € R, ;. such that:

vx e R i Ix] < X" < ® lIx]I.

(See Exercise A.2.) In more general spaces fklathis is not necessarily true.

In several theorems, our results will be stated in terms of norms. Usually, the
result is independent of the particular choice of norm. In this case we will use
the symbol|e|| to denote any particular norm. Of course, we must use the same
norm consistently throughout the theorem. Occasionally we will|swgeto refer
to norms in two different spaces, sRy andR™. This is a slight abuse of notation,
since the norms are, strictly speaking, different and should be distinguished nota-
tionally. Naturally, we must, for example, use the norm consistentiyRfoand
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consistently forR™. However, unless otherwise specified, the nornR8rcould
be, say||e||;, while the norm orR™ could be, sayjje||-.

A.3.2 Matrix
We would also like to “measure” matrices. We make the following definition.

Definition A.29 A norm (or matrix norm) on R™" is a function,|e|| : R™" — R,
with the following properties:
(i) YAe R™" JJA] >0,
(i) YA€ R™" (Al =0) « (A=0),
(i) YA, B e R™" |A+ B| < [|All + [IBI|,
(iv) VA R™N Vo € R, |aA| = |af | Al
O

We often use the particular matrix norm described in the following.

Definition A.30 Suppose we have two vector norihe]| defined onR" andR™, respec-
tively, and a matrixA € R™". Then theinduced matrix norm |e| : R™" — R is
defined by:

VYA e R™" Al = lma>§||Ax||, (A.2)

[X|l=
where:

e the norm in||x| is the norm orR",
e the norm in|| Ax|| is the norm orR™, and
e the norm in|| A|l is the induced matrix norm that is being defined.

O

(The maximum on the right-hand side of (A.2) exists by Theorem 2.1 since the max
is over a bounded set (see Definition A.46) and the norm is a continuous function.
See Definition A.35 and Exercise A.8.) An induced matrix norm is a matrix norm
according to Definition A.29. (See Exercise A.4.) If the norm®RJrandR™ are,
say, both thd_, norms or both thd.; norms, then we will typically use the same
symbol for the norm omR", the norm orR™, and the induced matrix norm. The
appropriate norm will be clear from the context. However, if the normR'band
R™ are different then the symbols should be more carefully distinguished.

We have the following.

Lemma A.1 Suppose that we have three vector notrag defined orR", R™, andR",
respectively. Then:

VA e R™" x e R, [|AX] < Al IXII, (A-3)
VA e R™" B eR™ |AB| < ||Al B,

where each matrix norm is induced by the corresponding pair of vector norms.
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Proof First observe that:

1 ) .
||x|| H ﬂ IX|l, by Property (iv) of norms, sincd/ ||x||| = 1/ |IX|l,

= 1
Therefore,
IAXI = | IIX] A x|l , multiplying and dividing by a constant
11l
1
= |Ix| ‘Anx , by Property (iv) of norms, since||x|| | = ||IX]],
< Il Al by definition of | Al, since| & H -1

Now let|ly|| = 1. Then,

|ABY| IA| 1By, by (A.3) applied toA € R™" andBy € R",
IAIIBI Iyl . by (A.3) applied toB € R™*" andy € R",

IAIBII, since|ly|l = 1.

=
=

Taking the maximum of the left-hand side over all vectors having norm 1, we obtain
from (A.2) that| ABJ|| < ||A]l ||B]l. O

If the norms orR™ andR™ are bothL , norms, then we writ¢e ||, for the induced
matrix norm and call it thd., matrix norm. For anyA € R™" | Al is equal
to the maximumsingular value of A [45, section 2.2.5.5][55, appendix]. The
singular values ofA are the non-negative square roots of the eigenvalués Af
If A e R™"is symmetric then A|, is equal to the largest of the absolute values
of the eigenvalues of [45, section 2.2.5.5][55, appendix]. Recall the following
definition.

Definition A.31 Let A € R"*" be square and suppose that we can firdK andé € K"
such thatAé = A&. Thena is called areigenvalueandé is called areigenvectorof A. O

In general, there ane eigenvalues for an x n matrix, given by the solution of the
characteristic equatiorn

detA— 1)) =

Definition A.32 Vector norms|e|| on R" and R™ and a matrix norm|e||’ are called
compatible if:

vx € R", VA € R™", | AX|| < [IAII" [IX]| -
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By definition, vector norms o®" andR™ and the corresponding induced matrix
norm are compatible. However, there are matrix norms which are not compatible
with any vector norm. For example, tReobenius norm:

1Al = (Z Z(Aw)

k=1 ¢=1
is not compatible with any vector norms. More details on matrix norms are con-
tained in [45, section 2.2.4.2].

A.4 Limits
We discuss limiting properties of sequences and of functions.

A.4.1 Convergence and limits
Sequences have limiting properties embodied in the following.

Definition A.33 Let ||e|| be anorm oR". (See Definition A.28 for the definition of norm.)
Let {x™}°° ; be a sequence of vectorsii. Then, the sequenda(”} ; convergesto a
limit x* if:

Ve > 0,3N € Z, such thatv € Z, andv > N) = Hx(”) — x| <e.

We write lim,_ o X = x* or lim x = x* and callx* the limit of the sequence

vV—>00
{xW}ee,. O

Definition A.34 A sequenc¢x(”)}‘v’°:0 has araccumulation point x* if some sub-sequence
of the sequence convergesxt O

A.4.2 Continuity

Definition A.35 A functiong : R" — R™ is continuous atx* if there are any normie||
onR" andR™ such that:

Ve > 0,38 > 0 such that(||x* — x| <8) = (Jox*) —gx)| <¢€). (A.4)

A function iscontinuous onS € R" if it is continuous ak* for everyx* € S. If a function
is continuous of$ = R", then it is said to beontinuousor continuous everywhere O

Notice that by Exercise A.2, Part (iv), for a giventhe largest value aof that
satisfies (A.4) will depend on which norm is used®h however, it can be shown
that the property of continuity of a functiap : R" — R™ is independent of the
choice of norm oR" andR™. In more general spaces thRA, this is not true [82,
section 2-71].
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A.4.3 Differentiation
A.4.3.1 First derivative

Definition A.36 We say that a functiori : R — R is differentiable atx* with respect to
x or itsfirst derivative with respect toax exists atx* if the following limit exists:

lim f(x* +68) — f(x )‘
§—0 )

The value of the limit is denoteg%c (x*). Afunction f : R" — R is partially differ-
entiable at x* if, for k = 1, ..., n, the first derivatives with respect tq all exist. We
write g—)z((x*) for the first derivative with respect ta, k = 1, ..., n, and call them the

first partial derivatives atx*. A functiong : R" — R™M is partially differentiable if each
functionge, £ = 1, ..., m, is partially differentiable.
Suppose thaf : R" — R andg : R" — R™ are partially differentiable at*. That is,

suppose thag(ik (x*) exists for eactk and suppose th )?If (x*) exists for eactk and?.

Then thederivative andgradient of f at x*, symbolsg—)]: (x*) and VT (x*), respectively,

are defined as follows:

af . 1xn ; . af .
° W(X ) € R**"is therow vector withk-th entry equal tm (x*), and

e Vf(x*) € R"is thecolumnvector withk-th entry equal t%fk (x*).

We have thag?f x*) = [VExH)]T

Furthermore, thalerivative and gradient of g, symbolsg—iJ and Vg, respectively, are

defined as follows:

% * mxn ; i Wi _ 09t o
* o x*) eR is the matrix with¢k-th entry equal t%k (x*), and

e Vg(x*) € R™M js the matrix withk¢-th entry equal t@?wglf (x*).

That is,a—)? x*) = [Vg(x*)]T.

If the partial derivatives exist for all points in the s2iC R" then the function is said to
of ag

be partially differentiable o$. We write —, Vf, %

X , and Vg for the functions whose

values at eacl* € S is given byaa—):c (x*), VI (x*), g—)?(x*), andvg(x*), respectively. If

the partial derivatives exist for all points BRI then the function is said to be partially dif-
ferentiable or partially differentiable everywhere. (For the distinction between a partially
differentiable function and a differentiable function, see [72, section 2.3].)
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The symbolV is sometimes pronounced “del.” The matga% is also called thdacobian
and we often use the symbalfor the Jacobian of the functiam
O

Definition A.37 If f : R" — R is partially differentiable with continuous partial deriva-
tives andx* € R", Ax € R", then the functio : R — R defined by:

vVt e R, ¢(t) = f(X* +tAX)
is a differentiable function. Moreover, by the chain rule [72, section 2.4]:

do

o o T
gt 0 = Vi) ax.

We call Vf(x*)TAx the directional derivative of f at x* in the directionAx since is
evaluates the rate of change bin the directionAx from x*. O

If f is partially differentiable at a point* € R" but its partial derivatives are not
continuous ak* then the functiorp in Definition A.37 may not be differentiable.
(See Exercise A.9.)

A.4.3.2 Second derivative

Definition A.38 A seconzd derivatives a derivative of a derivative function. For a function
for the derivative with respect t& of the derivative with

f:R" — IRwewrite8 f
0Xg 0 Xk

respect tox of f. If these functions exist for eaghandk then we say that the function is

2
twice partially differentiable. We then defil%(-zf— i R" — R™N py:

Ve, K, [

92f7] 9%f
X2 K TOXeOXK

2 2
We callg—xzf— the Hessianof f and we also writév%f andVv;2f for{?—xzf—. O
The Hessian of a function is the same as the Jacobian of its gradient. Exer-
cise A.10 shows the reason for tléein Definition A.20 of a quadratic function.
Exercise A.10 shows that if is quadratic then its Hessian is constant. f lis
approximately quadratic, then its Hessian is approximately constant.

A.4.3.3 Symbolic conventions

Symbols and conventions for functions and derivatives are often confusing. We
will use the following convention. Each function we introduce will be defined in
terms of a “dummy variable.” The dummy variable is the argument as specified in
the definition of the function. We must specify the value of the function for each
possible value that the dummy variable can take on in the domain of the function;
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that is, the dummy variable is running over all possible values. We will then avoid
using the dummy variable in any role where it is thought of as a constant or a
particular value.

For example, suppose thatvere defined using the dummy varialeWwhen we
refer to the function we will write eitheg or g(e), omitting the dummy variable.
To indicateg evaluated at a particular poirt we write g(x’).

To indicate the derivative of the function evaluated at a pdiate ertea—f x)).

The derivative function will be denotegai)g org—)?(o). We will avoid usingx to

stand, at the same time, for the dummy variadnhe for a particular point in an
expression because of the difficulty in distinguishing:

e the use ok as the dummy variable hag)% from

e the use ofk in the argument o% (X).

To see this issue, consider the functgpnR — R defined by:

VX, g(x) = (x)°.

Then,g—f is the function defined by:

99 _ 2
VX, W(X) = 3(x)~.

If we write:

99 2

then we mean the functiog)% evaluated at the pointx)?, which is 3(x)?)? =

3(x)*. However, we interpret the similar-looking express%({{g((x)z)] as mean-
ing:

0 20 _ 99 o0 9 o oo

3 [Q0D] = Z2((0?) x 2 [(0)7],

= 3x)*x 2x,
= 6(x)°, (A.6)

using the chain rule [72, section 2.4]. Because it is easy to confuse (A.5) and (A.6)
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we will usually try to avoid expressions like them and we will typically use¥he
notation to denote the gradient function.

A.4.4 Integration
A.4.4.1 Fundamental theorem of integral calculus

Theorem A.2 Let f : R — R be a differentiable function and lat b € R. Then:

b gf
fb)y— f(@ = [ - dt
(b) — f(a t_adt()

Proof See [114, section 4-8

A.4.4.2 Integration of non-negative function
Theorem A.3 Let f : R — R, be continuous and let, b € R. Then:

b
/ f(t)dt>0.
t

=a

If f(t) is strictly positive fora <t < b then the integral is strictly positive.

Proof See [114, section 4-8] and Exercise A.11.

A.5 Sets
A.5.1 Notation

It is often convenient to define sets by collecting together all those elements from
another set, such & or R", that have a particular property. We formalize this in
the following.

Definition A.39 Let® : S — {true, falsé be a function that evaluates to either true or
false. By{x € S|®(x)} we mean the subset 8fconsisting of all those elememnssuch
that®(x) is true. The functiom® is often expressed “loosely

For example{x € R?|—1 < x; < 1} means the set of all two-vectors such that the
first entry of the two vector, namely, has a value that lies betweeri and 1.

If the dummy variable in the definition @ and the sef are clear from context,
then we sometimes omit th& “e S|.” For example, if the context is clear, we might
write {—1 < x < 1} for {x € R|-1 < x < 1}. If there are multiple conditions
in the definition of the set then these are separated by commas. They should be
interpreted as meaning “and” or “intersection.” For example,c R"|g(X) =
0, h(x) < 0} means the set of vectoxsin R" such thag(x) = 0 andh(x) < 0.
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A.5.2 Open and closed

Definition A.40 A point x¢ € R" is called apoint of closure or alimit point of a set
S € R"if there is a normi|e|| such that:

Ve > 0,3x° € Ssuch that|x* — x°| <e.

A point x' € R" is called arinterior point of a setS C R" if there is a norm|e|| such
that:

Je > 0 such thaw'x € R", (Hxi — XH < e) = (X eN).

The set of all limit points ofS is denoted by ¢5). The set of all interior points df is
denoted by infS) and is called iténterior . O

Any point inS is also a limit point ofS, but in general some limit points & may
not be contained i8. That is,S C cl(S). Any interior point ofS is contained irS§,
but in general some points Bfare not interior points d§. That is, intS) C S.

Definition A.41 A setS C R" is closedif it contains all its limit points. That is$ is
closed if c[S) = S. A setS € R" is openif (R"\ S) is closed or, equivalently, if every
pointinS is an interior point ofS. That is,S is open if in{S) = S. O

Definition A.42 Theboundary of a setS C R" is defined to be the sétl(S) \ int(S)). O

For a pointx® on the boundary 0b C R" there are points if§ that are arbitrarily
close tox? and points not it$ that are arbitrarily close tg®. A closed set contains
its boundary. For example, consider a “closed ball” as defined in the following.

Definition A.43 A closed ballof radiusp € R, about a poink©@ ¢ R" is the set:

[xeR” ‘x—x(O)H 5/0}.

O

A closed ball is (not surprisingly) a closed set and contains its boundary. By Def-
inition A.40, for any interior poink' of a setS, we can find a closed ball of some
radiuse > 0 aboutx' that is contained if$. We can also define an “open ball.”

Definition A.44 An open ball of radiusp € R, about a poink©@ e R" is the set:

{xeR” x—x(o)H <p}.

O

The interior of a closed ball is the corresponding open ball.

Definition A.45 An open set ifR" containing a poink© is called aneighborhood of
x©@. o
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An example of a neighborhood &f? is an open ball of radiug > 0 aboutx©.

Definition A.46 A setS € R" is boundedif there existso € R, and a normj|e| such
thatvx € S, |X|| < p. O

A closed ball is bounded. An open ball is bounded.

A.5.3 Projections

Definition A.47 LetS C R", letn’ < n, and letP € R" be defined by:

P:{geRW

3x € S such thatx = Xin_n, k=1, ...n’} )

The setP is called theprojection of S onto the lastn’ components ofR". If n” = 1 then
we call P the projection ofS on the last component &". Similarly, we can define the
projection onto any other subset of the components.

For example, ifS € R? is the closed ball of radius 1 centered[ag} then the

projection ofS onto the last component & is the sefP = {x; e R| — 1 < X1 <
1} CR.

Definition A.48 Let | o be a normS C R", andX € R". Then theprojection of X on S
is the set argmips {||x — %] } [15, sections 6.1 and 8.11]

A.6 Properties of matrices
A.6.1 Singular and non-singular matrices
A.6.1.1 Definitions

Definition A.49 A square matrixA € R"" is invertible if there exists another matrix in
R " (which we writeA™ and call tha@nverse) that satisfies:

ATA=AAT =,

An invertible matrix is also referred to asn-singular. If no inverse exists, ther is
calledsingular. O

Definition A.50 Let A € R™", Then we define the following.

e Therange spaceof A is the setR(A) = {y € R™M|3Ix € R" such thaty = Ax}. (We
often abbreviate this expression by writifghx € R™|x € R"}, where it is understood
that the set contains the valugs= Ax for all x € R".)

e Thenull spaceof Ais the setNV'(A) = {x € R"|Ax = 0}.

O
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For example, consider the following.

o If A=0thenR(A) = {Ax € R"|x € R"} = {0} and N (A) = {x € R"|Ax =
0} =R".
o If A=1"thenR(A) = {Ax € R"x € R"} = R andN(A) = {x € R"|Ax =
0} = {x e R" Y p_; x = O}.
o If A=1thenR(A) = {Ax € R"x € R"} = R"and N (A) = {x € R"|Ax =
0} = {0}.
Since A0 = 0 for any matrix A, the zero vector is an element of both the range
space and the null space of any matrix.

For anyA € R™" we have the somewhat surprising result that any vector in
R" can be expressed as the sum of ([55, section A.15]):

e an element of the range spaceAdt plus
e an element of the null space 8f

That is, we have the following.

Theorem A.4 Let A € R™". Then,
vx € R", 35 € R™, 3z € R" with Az = Osuch thatx = z + ATA.

Proof See [55, section A.15] and Exercise 5.47.

Definition A.51 A vector subspaceof R" is a sefS € R" with the following properties:
(i) VX, x' € S,x+x" €8,
(i) VX € S,Va e R, ax € S.

O

The setR" is a vector subspace of itself. The null spa¢€A) and range space
R(A) of a matrix A e R™" are vector subspaces®&f andR™, respectively.

Definition A.52 Let A € R™"M andb € R™. A set of the form{x € R"|Ax = b} is called
anaffine subspaceor alinear variety. If A € R" and is not equal to the zero vector,
then{x € R|Ax = b} is called ahyperplane. O

The notion of a hyperplane generalizes the notion of a plane in three dimensions:
a hyperplane has exactly one less “dimension” than the sRade which it is
embedded. A hyperplane R" dividesR" into two half-spaces. The boundary of
each half-space is the hyperplane.

Definition A.53 In describing matrices, we will mention the:

e upper triangle,
e diagonal, and
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e lower triangle.

Some authors use “upper triangle” to refer to both the entries above the diagonal as well as
on the diagonal. In this book we will use upper triangle to refer to only the entries above
the diagonal. Similarly, we will use “lower triangle” to refer to only the entries below the
diagonal. By arupper triangular matrix , we will mean a matrix that has zeros in its
lower triangle. Similarly, dower triangular matrix has zeros in its upper triangle.

A.6.1.2 Properties

Theorem A.5 A square matrixA € R"*" that is singular has the property that there exists
a non-zero value ok such thatAx = 0. That is, the null space of a singular matrix
contains elements besides the zero vector.

Proof See [55, appendix]2

Theorem A.6Let A € R™". Suppose thaB € R"™*" satisfiesAB = |. ThenB = A
andBA = I. Similarly, if B € R"*" satisfiesBA= 1, thenB = A2 andAB = 1.

Proof See [55, appendix]2

In general, for two arbitrary matrice& and B, it is not usually the case that
AB = BA In the special case th& = A, this relationship, calledommuta-
tivity , does hold.

A.6.2 Linearly independent columns and rows

Definition A.54 Let Ae R™" x e R",y e R™, g: R" — R™. Then:

the column vectoAx is called dinear combination of the columns ofA,

the row vectory™ A is called dinear combination of the rows ofA,

the functiony’g : R" — R is called dinear combination of the entries ofj,

the equatiory’g(x) = 0 is called dinear combination of the equationg(x) = O.

O ®© © e e

Definition A.55 A matrix A € R™" haslinearly independent columnsif:
vx e R", (Ax =0) = (x = 0).

It haslinearly independent rowsif:
vy e R™ (y'A=0) = (y=0).

If the matrix does not have linearly independent rows then we can write one of the rows as
a linear combination of the others and we say that the rowbrearly dependent If the

matrix does not have linearly independent columns then we can write one of the columns
as a linear combination of the others and we say that the columtiseady dependent

O
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If Ahas linearly independent columns th&hhas linearly independent rows. If
A has linearly independent rows thé has linearly independent columns. In the
case thaim = n then having linearly independent columns is equivalent to the ma-
trix being non-singular and is equivalent to the matrix having linearly independent
rows. If the null space oA has elements besid@ghen the columns of are not
linearly independent and vice versa as Exercise A.16 shows.

Definition A.56 A basisfor a vector subspace is a linearly independent set of vectors such
that all the elements of the vector subspace can be expressed as a linear combination of the
vectors in the basisl

If the columns of a matrixA are linearly independent, then the columns form a
basis for the range space Af For example] € R™" has linearly independent
columns and the vectofs,, . . ., I} are a basis foR", which is the range space of
l.

Definition A.57 Consider a matri € R™". We define:

e arow sub-matrix to be a matrix obtained from by deleting some of its rows, and
e acolumn sub-matrix to be a matrix obtained from by deleting some of its columns.

The row rank of A is the number of rows in the largest row sub-matrixfthat has
linearly independent rows. Thelumn rank of A is the number of columns in the largest
column sub-matrix ofA that has linearly independent columns.

A matrix A € R™" has full row rank if its row rank is equal tm. It has full column rank
if its column rank is equal ta. A square matrixA € R™" is invertible if and only if it has
full row rank and if and only if it has full column rank.

O

A.6.3 Positive definite and positive semi-definite matrices
Definition A.58 A matrix Q € R™" is positive definiteif:
vx € R", (x # 0) = (x'Qx > 0).
A matrix Q € R™" is negative definiteif (—Q) is positive definite D
Definition A.59 A matrix Q € R™" is positive semi-definiteif:
vx e R", xTQx > 0.

A matrix Q € R™" is negative semi-definitdf (—Q) is positive semi-definited
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A.6.4 Positive definiteness on a subspace

Definition A.60 A matrix Q € R"™" s positive definite on the null spacgx € R"|Ax =
0} if:

vx € R", (Ax = 0andx # 0) = (x'Qx > 0).

O

Definition A.61 A matrix Q € R"™" is positive semi-definite on the null spacgx €
RN Ax = 0} if:

vx € R", (Ax=0) = (x'Qx > 0).

A.7 Special results
In this section we present some special results.

A.7.1 Weierstrass accumulation principle
Although, in general, sequences may or may not converge, we have the following.

Theorem A.7 Suppose that the sequen{oé”)}ﬁio is bounded. (See Definition A.46.)
Then it has a convergent sub-sequence. (See Definitions A.18 and A.34.)

Proof See [111, corollary of theorem 2 of chapter 2.

A.7.2 I'Hdpital’s rule
In some cases, limits involving ratios can be calculated udihgpital’s rule.

Theorem A.8 Let f,g : R — R be differentiable and suppose thany .o f(x) =
limy_o09(x) = 0. Then:

df
lim ﬁ = H(X)
x—>0g(X) x—0dg .’
W(X)

assuming that the limit on the right-hand side exists.

Proof See[111, theorem 9 of chapter 11].
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A.7.3 Implicit function theorem

In discussing sensitivity analysis, we are interested in how an optimal solution
varies with the values of a parameter.

Theorem A.9 Letg : R" x RS — R" be partially differentiable with continuous partial
derivatives. Consider solutions of the equatiay(®; x) = 0, wherey € RS is a
parameter. Suppose that* € R" is a solution, satisfying:

g(x**; 0) =0.

We callx = x** the base-case solution and= 0the base-case parameters. Define the
(parameterized) Jacobiad : R" x RS — R"™ " py:

Vx e R", Vy e RS, J(x; x) = g—)?(x; Xx)-

Suppose thaf (x**; 0) is non-singular. Then, there exists a neighborh@odf y = 0
and a partially differentiable functior* : RS — R" with continuous partial derivatives
such that:

e x*(0) = x** is equal to the base-case solution,
e X* satisfies:

Vx € P, g(x*(x); x) =0,
and

e the sensitivity ok* to variation of the parameters satisfies:

(0 = ~[I0¢ () 0] K (' (0): 0.

whereK : R" x RS — RS is defined by:

vx e R", Vx € RS, K(X; x) :aé)_)?(x; %).

Proof See [70, section A.6][72, section 4.4].

The most straightforward application of the implicit function theorem is in calcu-
lating the sensitivity tg¢ of the solution of simultaneous equations evaluated at the
base-case. This is considered in Section 7.5.

Since the base-case solutivtt in Theorem A.9 is equal ta*(0), we will usu-
ally abuse notation somewhat and wrie for both the base-case solution and
alsofor the function that represents the dependence of the solutign dinat is,
whether the symbok* stands for a particular vector value or for a vector func-
tion will depend on context. Since we are usually only interested in the base-case

. . e X* o .
solutionx* and its sensitivity at the base—caga?(,— (0), this will not be ambiguous.
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A.7.4 Inverse function theorem

A related result is called the inverse function theorem. It allows us to “invert” a
function. See Exercise A.19 and [72, section 4.4] for details.

Exercises
Types of functions

A.1 In the following, Q € R™" is not necessarily symmetric. Defigg = %(Q + QM.
(i) Show thatQ" is symmetric.
(i) Show thatvx, 3xTQx = IxTQ"x.
(i) Show that(Q is positive semi-definite< (Q” is positive semi-definite
(iv) Show that(Q is positive definit¢ < (Q” is positive definitg.

Norms

A.2 In this exercise we consider several norms.

(i) Prove that thel1 norm ||e||; satisfies the definition of a norm.
(ii) Prove that infinity normle||,, satisfies the definition of a norm.
(iii) Show that onR? that||e|[; = [|e]l> = ||®]lx-
(iv) Show that onR" each of these three norms is bounded above and below by some
constant multiple of the others. Calculate all six constants relating the norms. (Each
constant depends am)

A.3 Use the triangle inequality (and any other properties of norms that you might need)
to prove that for any norm:

X+ Yl = lIxIF = lyll -

A.4 Show that the induced matrix norm in Definition A.30 satisfies Definition A.29 of a
matrix norm.

A.5 Consider the matriA € R?*? and theL, norm |le|,. Calculate the value of the
induced matrix norni| A|| for:

M A=|g 5]
(i A={g 3|
(ii) A=_(1) %
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Limits

A.6 Do the following sequenceS((”)};’O:O have any accumulation points? For each

accumulation point, specify a convergent sub-sequence and its accumulation point.

. W) _ (1))2, if vis odd,

() Vv eZy x¥ = 1/(v+1), ifviseven.

1, if visdivisible by 4,
. 1/v, if v has remainder 1 after division by 4,
) —

(@) Vv eZy, x = (v)2, if v has remainder 2 after division by 4,
—1/v, if v has remainder 3 after division by 4,

[(1”/)5] if v is odd,

[1(/1)(1?)12)} , ifviseven.

i)y Vv € Zo, xO) =

A.7 Consider the functiorf : R — R defined by:

1, ifx=0,

Show thatf is not continuous at = 0. Use thé|e||; norm.

A.8 Show that a norm oRR" is a continuous function. (Hint: Notice thié| : R" — R,

so you must define norms d" and onR. Which norms should they be to make your
work easy?)

A.9 ([72, example 2 of appendix A].) Let : RZ2 — R be defined by:

X1X2

—22___ ifx #£0,

vx e R% f(x) =] VoZ+o?2 7
0, ifx=0.

(i) Sketch the function.

(i) Show thatf is partially differentiable at eack € R2.

(iii) Show that the partial derivatives are not continuous’at= 0.
(iv) Let Ax = 1 € R? and define the functiop : R — R by:

vVt e R, (1) = f(tAX).

Is ¢ continuous at = 0?
(v) For¢ defined in the previous part, ¢sdifferentiable at = 0?

A.10 In this exercise we consider quadratic functions.

(i) Let Q € R™" be symmetric. Show that the Hessianfotlefined in (A.1) is given
by Q.

(i) Suppose thatQ € R™" is not symmetric. What is the Hessian 6fdefined
in (A.1)?
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A.lllLet f : R — R, be continuous and let, b € R.
(i) Prove that:

b
/ f(t)dt=>0.
t

=a

(i) Now suppose thaf (t) is strictly positive fora < t < b. Prove that:

b
/ f()dt > 0.
t

=a

Sets

A.12 In this exercise we consider open and closed balls.

(i) Prove that a closed ball is a closed set. Make sure that your proof applies the
definitions carefully.
(ii) Prove that an open ball is not a closed set.
(i) What points would have to be added to the open ball to make it closed? Specify the
smallest set of added points that would make the open ball into a closed set.
(iv) Prove that an open ball is an open set.

A.13 Show that the intersection of two closed sets is closed.

A.14 In this exercise we consider sets defined in terms of functions.

(i) Letg:R" — R™M be continuous. Show th&t= {x € R"|g(x) = 0} is closed.
(i) Leth:R" — R be continuous. Show th&t= {x € R"|h(x) < 0} is closed.
(i) Let g : R" — RMandh : R" — R" be continuous. Show th& = {x €

R"g(x) = 0, h(x) < 0} is closed.

A.15 Suppose thdt : R" — R is continuous and consider the sgts- {R"|h(x) < 0},
S = {x € R"|h(x) < 0and, for at least ong, h;(x) = 0}, andS = {x € R"|h(x) < 0}.

(i) Suppose that each elementSis a regular point of the constrairtigx) < 0. (See

Definition 19.1.) Show that the interior &fis S and that the boundary &fis S.

(i) Suppose thah is a convex function (see Definition 2.16) and tBag . Show
that the interior ofS is S and that the boundary &fis S.

(iii) Show by an example that ih is not continuous then the boundary $fis not
necessarilys.

(iv) Show by an example that if is continuous but some elementsSore not regular
points of the constraints(x) < 0then the interior of is not necessaril§.

(v) Show by an example thatlifis continuous and convex bt= ¢ then the interior
of S is not necessaril§.
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Properties of matrices

A.16 Let A €¢ R™", Show that the columns ok are not linearly independent if and
only if the null space ofA contains vectors besid@s

A.17 Do the following have linearly independent columns? What is the column rank of
each matrix?

0
(i) A= o}.
Lo
) 01
(i) A= 1 0]
r1 0
(i) A=|0 1].
0 0
110
(v) A=|0 0 1]
000
r—1 1
. 00
v) A=|3 3 ﬁ]
(vii) A=_% :23 1‘3}
ro 1
(vii) A=|0 2].
0 3

A.18Let Q e R™MandA € R™N,

() Suppose that there exisks € R, such thatQ + ITAT A is positive definite. Show
that Q is positive definite on the null spagé(A) = {Ax € R"|AAX = 0}.

(i) Suppose thaf is positive definite on the null spagé(A) = {Ax € R"AAX =
0}. Show that there existBl € R, such thatQ + ITATA is positive definite.
(Hint: Prove by contradiction. Suppose that for eack Z, there isx") such

that [x|| = 1 and kK®17(Q + vATA)X® < 0. Apply Theorem A7 to find a
convergent sub-sequence{af”)}° )

Special results

A.19Leth: R" — R" be partially differentiable with continuous partial derivatives and
x* € R". Suppose thab(x**) = 0 and that% (x**) is non-singular. Use the implicit
function theorem, Theorem A.9, to show that, in a neighborhogd €f0, there exists an
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inverse functionk* : R" — R" to h. In particular, show that there exists a neighborhood
P of x = 0 and a patrtially differentiable functiox* : R" — R" with continuous partial
derivatives such that:

o X*(0) = x**,
e X* satisfies:

Vx € P,h(X*(x)) = x,

and
o the sensitivity ofx* to variation ofy satisfies:

axX* oh .. -
W(O)Z[W(X )i| .

(Hint: Defineg : R" x R" — R" by ¥x € R",Vx € R", g(x; x) = h(X) — x.)



Appendix B

Proofs of theorems

B.1 Problems, algorithms, and solutions

Theorem 2.6 We follow the proof of [70, proposition 4, section 6.4].

= Suppose thaf is convex. Letx, X" € S be given. Then, by definition,
vt e [0, 1], f(X' +t[x —x]) < f(X) +t[f(x) = F(X)].
Re-arranging and dividing through byor 0 < t < 1, we obtain:

f(X' +t[x —xX] — f(X)

vt € (0, 1], "

< f(x) — f(X). (B.1)
To interpret (B.1), consider a line interpolatifgbetweenx’ andx as shown in
Figure B.1. This line has slope:

f(x) — f(x)
X — X'l

and is illustrated with the dashed line in Figure B.1. Now consider a line interpo-
lating f betweernx’ andx’ 4 t[x — X’]. This line has slope:

f(X +t[x —xT] — f(X)
tix — X'l

’

and is illustrated with the dash-dotted line in Figure B.1. Equation (B.1) shows
that the slope of the dash-dotted line is no greater than the slope of the dashed line.
This is true for each value afin the range O< t < 1. The situation is illustrated

in Figure B.1.

802
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f(x)

1

0.9
0.8
0.7
0.6

Fig. B.1. Graphical illus-
7 tration of inequality (B.1)

o3 7 in Theorem 2.6. The line
0o} S 1 interpolating f betweernx’

2 and x is shown dashed,

while the line interpolating
% 0.1 02 03 04 05 05 o7 08 09 1 X f betweerx’ andX/+t[X—
X' X +t[x —x7 x x'] is shown dash-dotted.

0.4

01r

Moreover, sincef is partially differentiable with continuous partial derivatives,

vi(x) (x = x)
— im f(X +t[x—x]) — f(x’)’
t—0 t

by definition of the partial derivative (see Definition A.36),
and of the directional derivative (see Definition A.37),

< !irrg)[f(x) — f(x"], by (B.1), onreplacing f (x' + t[x — x']) — f(x))/t

with the valuef (x) — f (x’), which is always greater,
= fx) — fX).
The result is true for arbitrary, X’ € S so that (2.31) holds.
< Conversely, suppose that (2.31) holds. kek” € Sand 0<t < 1 be
arbitrary. To prove thatf is convex, we must show thdt(x + t[x” — X]) <

f(X) +t[f(X") — f(X)]. Let X’ = x 4 t[x” — x]. Then, equivalently, we must
prove thatf (x’) < f(x) +t[ f(X”) — f(X)]. Now notice that:

fOO+t[fX)— fT(X)] =[1—-t]f(xX) +tf(x"),
so that equivalently we must show that:
f(x) <[1—-t]f(x)+tf(x"). (B.2)
By (2.31), sincex, X’ € S,
fx) > f(xX)+ Vi) x —x). (B.3)
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But by (2.31) applied ta” andx’, (that is, replacing by x” in (2.31) and observ-
ing thatx”, X’ € S),

f(x") > f(x)+ Vi) = x). (B.4)

Now multiply (B.3) by [1— t] and multiply (B.4) byt and add the results together
to obtain:

[1—t]f(x)+tf(X")
> [L—t]fx)+[1—t]VE) (x = x) +tF (X) + Vi) (x" = X)),
= FX)+ VIC) T - x —x) + (X" = X)),
= )+ V) X+t = %) —X],
on collecting and re-arranging the terms in the square brackets,
= f(X)+ Vix)'[0], by definition ofx’,
= f),

which is (B.2). O

Theorem 2.7 By Theorem 2.6, we must show that (2.31) holds. kex’ € S.
For 0 <t < 1 we have thatx’ + t[x — X’]) € S sinceS is convex. Define
¢ :[0,1] - RbyVt € [0,1],¢(t) = f(X' +t[x — x']). Notice that:

#0) = f(x), (B.5)
p(H = fx). (B.6)

Taking derivatives:

do
gt ¢
do
dt

2
éj—f(t) = (x=X)'VH X +t[x = XD x = x),

t)y = VI +t[x— x’])T(x — x'), by the chain rule [72, section 2.4],

0 = Vf (x/)T(x — X), evaluating the previous expressiort at 0, (B.7)

A%

0, for 0 <t < 1 sinceV? (x' 4 t[x — x']) is positive semi-definite
(B.8)
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By (B.5), (B.6), and (B.7), the condition (2.31) is equivaleniftdl) > ¢(0) +

d¢ :
W(O)' We have:

1
¢1) = ¢0O+ 3—t¢(t)dt,
t=0

by the fundamental theorem of integral calculus applieg,to
(see Theorem A.2 in Section A.4.4.1 of Appendix A)

1 t 2
— wm+[ﬂgg@+[ %gwqut

by the fundamental theorem of integral calculus applieggi)
(see Theorem A.2 in Section A.4.4.1 of Appendix A)

d P
= ¢(O)+W(O)+ft:0 t’:OW(t)dt dt, (B.9)
evaluating the integral of the first term in the integrand
d
> $0) + 470,

since the integrand is non-negative everywhere by (B.8),
(see Theorem A.3 in Section A.4.4.2 of Appendix A)

This is the result we were trying to prove. A similar analysis appli&ifis posi-

tive definite, where we note that continuity and positive definiteness of the Hessian
2

implies that the integran§t7¢ (t") in (B.9) is continuous and strictly positive ev-

erywhere. O

B.2 Algorithms for linear simultaneous equations

Lemma 5.1 First notice that the symmetry & is preserved when we re-order the
rows and columns using diagonal pivoting. Therefore, we can assumA e
its rows and columns ordered so th#Aa, is the first pivot. By definition,

Ve=2,...,Nn, Ly = Agl/A]_l.
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Now consider any entrA'? with ¢, k > 2. We have:
A? = Ay — LyAg. by definition of A®,
= A — Ai1A/A11, by definition ofL ;.
Also, A2 = Ay — LAy, by definition of A?,
= A — A A/ A1, by definition ofLyg,
= Awx — AnrAi/A11, by symmetry ofA,
— A@
e

|

Lemma 5.2 Again, we can assume thAﬂ-) was used as the pivot. Then,

Ve > j, Ly = AY/AD,

by definition. Consider any entrf,*" with £, k > j + 1. We have
ALY = A — Ly Al by definition of AU+,

= ALY - AVAY/AD, by definition ofL;.
Also, ALY = A} — LA}, by definition of AT+,

= AY - AYAY /AL, by definition ofLy,
= AR — APAR /AL, by symmetry ofAD,

i
_ (j+1)
_— Azk .
O

Theorem 5.5 We divide the proof into three parts.

A is invertible Suppose thatA € R"™ " is singular. Then, by Theorem A.5 in
Section A.6.1.2 of Appendix A, there exists# 0 such thatAx = 0. But then
x"Ax = xT0 = 0 and soA is not positive definite. This is a contradiction and/so

is, in fact, non-singular. (Positive definiteness is a “stronger” condition than being
invertible.)

Alis factorizable asL DL We now claim that we can use the standard pijt

at each stage of the factorization algorithm to factorize symmetric positive definite
Ainto LU. For suppose not. That is, suppose that the factorization failed at, say,
stagef. By this we mean that factorization using the standard pivot was successful
for stages 1.. ., (¢ — 1), but we found that at stage A\’ = 0. (If we find a zero
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pivot at the first stage, theh= 1 and we defin@A®® = A. In this particular case,
AD =AD = A;;=0)

Let L’ be the product of the inverses of the matrisé<, ..., M1 defined in
the factorization algorithm in Section 5.3.2. {I&= 1, then defind.’ = |.) Notice
thatL’ is lower triangular with ones on its diagonal. We have= L’ A®.

Consider the top left-hand x ¢ submatrices ofA, L, and A and write A,
L', and A®, respectively, for these threéex ¢ submatrices. By construction, the
matrix L’ is lower triangular, whileA® is upper triangular. Let us use the symbol
e to stand for blocks of a matrix that have unknown and possibly non-zero entries.
Then we can write:

- A

A= |A ‘] by definition of A,
[ [}

= L'A®, by construction

L 0][A®
- | [ ] [ ] [ ] [ ] ’
by definition ofL’, L', and A® and sincel’ is lower triangulay
[['A® o o
= , on multiplying
[ ]

Therefore A = L'A®. For example, if we encounter a zero pivot at the first stage,
then A = [Ay] = [0], L’ = [1], AY = [0], and [0] = [1][0]. Since A® is
upper triangular, if we let)’ = A® then theLU factorization ofA is given by
A=LU"

Furthermore A is symmetric and has been factorized ifit&)’ using diagonal
pivots. Recall that from Corollary 5.3 and the discussion in Section 5.4.4 that if we
defineD to be diagonal with diagonal entries equal to the diagon&l’ot A®,

then we can factoA as('D[(']", where(’ is lower triangular with ones on the
diagonal and is diagonal. Sincé\\; = 0, we have thaD,, = 0. By Lemma 5.4
applied toA, A is not positive definite, since the entBy, is not positive.

In summary, if the factorization fails at stagehen A, the top left-hand x ¢
sub-matrix ofA, is not positive definite.

A

But letX € R’ be given and defing — [X

O] e R". We have:

0 0
sinceA is positive definite by hypothesis

Lot
= XTAX:[X] A[X]:XTAX>O,
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Thatis,% # 0 = %A% > 0. But this is true for anyk # 0 and soA is positive
definite. This contradicts the earlier result, so that in fact we could not have en-
countered a zero pivot at stageTherefore, we can successfully use the algorithm
to factorizeA asLU. But sinceA is symmetric, by definind to be diagonal with
diagonal entries equal to the diagonalbfwe can factorizeA asA = LDL.

In conclusion,A can be factorized inte. DLT with L lower triangular having
ones on its diagonal and diagonal. By Lemma 5.4, sinc& is positive definite,
D has strictly positive diagonal entries.

A7lis positive definite As we did in the proof of Lemma 5.4, |@: be diagonal
with diagonal entries equal to the square roots of the corresponding diagonal entries
of D. Then:

Al — [LDL'™, by assumption om,
— [LT1'DILY, recalling from Section 5.3.2 that s invertible
— LY DL since LY = [L1™, (see Exercise 5.18)
- [L‘HT[D%}J[D%]AIJ4,bydeﬁnMonofD%.

-1
Let x # 0 be given. Note thaED%] L-1x + 0O (for elsex = LD20 = 0.) But

2
this means that' A=x = ‘[DZ] L=*x| > 0, by Property (ii) of norms, so that

2

A7lis positive definite. O

Lemma 5.6 To calculateAU+D, usmgA(” as pivot, we apply (5.11) to calculate:
AR = AR — LA j<t<nj<k=n

The number of fill-ins is equal to the number of times tAgf = 0, yetL; ASY #

0, so thatAll™ = 0. Definel © € R™" by:

i A
() 0, if A’ =0,

Ve, k, IZL = ; flj()
1, if Ay #0.

Then afill-in is created at th&k-th entry if:
() Al =0;thatis,!)) =0, _ |
(i) Ly = A(”/A(” #£ 0; that IS,AE}) £0 andlfz}) =1, and
M)&¥¢QmMBﬂf:L
Therefore, a fill-in occurs at thék-th entry if and only if(1 — 1) 1714 = 1. 1f
a fill-in does not occur, theed — 1)1 (”I U = o.
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We definedN () to be the number of fill-ins created at sta,'gdue to pivoting
on Al at stagej. We can calculat®l (j) by summing1— I i)1114) over all the
£k-th entries that are in rows+ 1 ton and columng + 1 ton That is:

N(j) = Z @— 1. (B.10)

SinceAis sparse and we are trying to minimize fill-ins, it is reasonable to assume
that A is also sparse. That is, it is rare fé) to be non-zero and we can
approximate the sum in (B.10) by neglecting the téim- Iéf()), since it is usually
equal to one. We calculate an upper bouNdj), on the number of fill-indN (j)
by neglecting the factafl — 1\)). That is:

N(G) < N(),

— O
- Z I IJk’

= | > I} > 15} | . separating out the sums,

j<t<n j<k=n
2
= Z I“) , becausedl) is symmetric.
j<k=n

The last expression is the square of:
[(the number of non-zero entries in theh row of AD) minus 1]

(Recall that the firsgj — 1) entries in this row are zero because of earlier stages in
the factorization.)Od

B.3 Algorithms for non-linear simultaneous equations

Theorem 7.2 We divide the proof into four parts:

(i) proving that{x*}>°, is Cauchy and has a limit that is containedin
(i) proving that the limit is a fixed point o®;
(iii) proving that the fixed point is unique; and
(iv) proving that the sequence converges to the fixed point according to (7.21).
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{x™}% ;is Cauchy and has a limit that is contained inS We prove that the se-
quence of iterates is a Cauchy sequence. By Lemma 7.1, this will establish that the
sequence of iterates converges to some pdingay. To prove that the sequence is
Cauchy requires four main steps, which successively bound the difference between
various pairs of iterates.

Step 1: We first bound the norm of the difference between two successive iterates:
[xMm+D — x|

= [ex™) —ox™)|.
by (7.20), the definitions ot ™Y andx™,

< L Hx(m) _ x(m‘l)} ,
since® is a contraction mapping with Lipschitz constant
< (L?|x™Y —xM2| repeating the same argument
< (LM[xP —xQ, (B.11)

repeating the argument a furth@n — 2) times.

Step 2: We use (B.11) to bound the norm of the difference betweentieand
O-th iterate:

[ = x|
— || (X(”) _ X(v—l)) + (X(v—l) _ X(u—Z)) 44 (X(l) . X(O))H ’
adding and subtracting terms

< x® = x| 4 [x¥D = x| 4o XD —xO
by the triangle inequality (Property (iii) in Definition A.28
of norms in Section A.3.1 of Appendix A) applied repeatedly
v—1
< > MO"x®—x@], using (B.11) fom=0,....,v -1,
m=0
1-L ’
using the formula for the sum of a geometric progression
1 1 0
= o I -x. (B.12)

since0< L < 1.
Step 3: We use (B.12) to bound the norm of the difference between an arbitrary
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pair of iteratesx”> andx™". Let us first suppose that< v'. Then:

me O

=

IA

=<

“¢(x(”/‘1)) — q>(x<“—1>)H by (7.20)

L “x(”’*l) —xD H , sinced is a contraction mapping

X(‘)/_V) — X(O)

(L)
applying the same argument a furtlfer— 1) times
(L)"
1-1L

’

[x® — x© |, by (B.12) for the(v' — v)-th iterate.

Similarly, if v < v then:

Hx(v’> o < WY [x® — x|
—1-L '

Combining the two results, we obtain:

min{v,v’}
L O C [x® —x@ . (B.13)

me — x| <
1-—

Step 4: We use (B.13) to prove thgx'}>° , is a Cauchy sequence. For, ¢et- 0
be given. We claim that:

In[e(—L)/||x® —x@]|]
In(L)

N =

will suffice in the definition of a Cauchy sequence. By definitiomNofwe
have that (on re-arranging and taking the exponential of both sides):

so that forv, v’ > N we have thatL)™n"}

N
O - x0] =,

xW —xO/@-1L) <e.

Therefore, by (B.13):

Vv, v > N, “X(”/) —xW

<e€

’

and the sequence is Cauchy. By Lemma 1)}, has a limit,x*, say.
ButS is closed an&k™ e S, Vv, sox* € S.
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x* is a fixed point of ® Notice that:

[@x) —xP| =[x —ox")
L|

|, by (7.20)

x* — x| sinced is Lipschitz  (B.14)

IA

Taking limits of the left- and right-hand sides of (B.14), and recalling that the
norm is a continuous function, (see Exercise A.8,) we obtain|iddk*) — x*|| <

L || x* — x*|| = 0, so that, by Property (ii) of norm& (x*) = x* andx* is a fixed
point of ®.

Uniqueness of fixed pointNow suppose there are two fixed poimts# x** of ®
in S. Then,

* *k

X =X

= [®x*) — dx™)|, sincex* andx™ are fixed points ofp,
< L|x*—=x"|. since® is Lipschitz
* , sinceL < 1 becaus&* # x** by supposition.

< |xr=x*|

But this is a contradiction. So, there is exactly one fixed paintsay.

Rate of convergenceNow note that:
< |
[®x¥P) —x*|, by (7.20)
[®x¥) — @(x*)]||, sincex* is a fixed point ofd,

< L |[x®P —x*|, by definition of contraction mapping,
< L?|x¥"? —x*||, repeating the same argument in the last three lines,
< L"[x© —x*|,repeating the argument a further— 2) times.

So asyv — oo, LY — 0, andx"”) — x*. That is, the iterative method (7.20)
converges to the unique fixed point®fin S. Furthermore, the error improves by
a factorL at each iteration, satisfying the bound (7.21).

Theorem 7.3 We reproduce the proof from [58, section 5.5] and divide it into four
parts:

(i) we first prove that the iterates staySn= {x € R" |[x — x©@|| < p_};
(i) we then go on to prove that the chord method iteration defines a contraction
mapping ors;
(iii) we then prove that the sequence of iterates converges to a sokitioriR"
of (7.1) that satisfies the estimate (7.22); and
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(iv) finally, we prove thatx* is the only solution in the open ball of radips
aboutx©@,

The iterates stay inS Consider the map:
S0 = x = [Ix)] g0,

which specifies the chord method (7.8)—(7.9) in the form (7.20). We showbthat
mapsS to itself. This requires us to estimate the vaIueJm{(O))]_lg(x) in terms

of known quantities. We know properties af(x©@)] "g(x©) and J, so we will
express{](x<°))]_lg(x) in terms of these. This requires five main steps.

Step 1: First:

] 900 =[] gx @) + )] x (@00 - gx ),
(B.15)

on adding and subtracting {x@)] "g(x®).

Step 2: We evaluatgg(x) — g(x@)), the factor in the second term on the right-
hand side of (B.15). Defing : [0, 1] — R" by:

vt € [0, 1], y(t) = g(X@ +t(x — x)).

Theny(0) = gx©@), y(1) = g(x), and, by the chain rule [72, sec-
tion 2.4)),

S—t’/(t) = JI(X? +t(x — x9)) x (x — xO).

Therefore:

gx) —g(x?) = y@ -y(0),

t=1
dy
—— (O dt,

by the fundamental theorem of integral calculus
(Theorem A.2 in Section A.4.4.1 of Appendix A)

t=1
_ / [3X© +t(x — xXO))] x (x — x@) dt. (B.16)
t=0
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Step 3: Substituting (B.16) into (B.15), we obtain:

[BX)] 90
[3x®)] " g(x?)
t=1
+ [J(x<°>)]‘1/ [IXOQ +t(x — xP))] x (x — x©) dt,
t=0

[3)] g0 + (x = x@) = [ )] T Ix®) x (x = x©)

t=1
FLOONT [ 10 X O] x (¢ - X d.
t=0

adding and subtracting — x©) = [J(x<°>)]_lJ(x<°>) x (X —Xx©),
= X7 gx) + (= x@) + [Ix)] 7 x

t=1
|:/ [J(X(O) +t(x— X(O)))] X (X — X(O)) dt — J(X(O)) X (X — X(O))] ’
t=0

on re-arranging
[3X] Tgx @) + (x = x©)

t=1
+ [J(x<°>)]‘1/ [IX@ +t(x = x@)) — IxD)] x (x = x©)dt,
t=0
(B.17)

where the last equality holds since the integral of a constant between 0 and
1 is equal to the constant.

Step 4: We have:

o (x) — x©

X — [I(xX@)] "g(x) — x©, by definition,
= 3] gx®)

t=1
—O T 3@+t (x = x@)) — I )] x (x —x©) dt,
t=0

from (B.17).

Taking norms and using the triangle inequality and Lemma A.1 in Sec-
tion A.3.2 of Appendix A repeatedly, we obtain:

[ @00 —x@]
< RO 9@ + || x

t=1
/ 3@ +tx = x@)) = I [x = x©] dt,
t=0
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t=1
< b+a/ ct”x—x(o)szt, forx €S,
t=0

by the aefinitions oh, b, andc, since:
e J is Lipschitz with constant on'S;
e X9 +t(x—x9) eS;and
e (XO +t(x —x©)) —xO =t(x — x©),
< b+ag?/2, (B.18)

evaluating the integral and noting tHat — x@|| < p_.
Step 5: By definition of p_:

2 1- 21— 2abc+ (1 - 2abo

- = (ac)?
2(1 - /1= 2abo) — 2abc
- (@c)? ’
20 —2b
- ac '

sob + ag?/2 = p_. Therefore, by (B.18)||®(x) — x©| < p_ and so
® mapsS to itself.

® is a contraction mapping We now show that is a contraction mapping. This
requires three main steps.

Step 1: First:

%(X) — 1 —[Ix@)] " I(x), by definition ofJ,

= [IxO) ™ x Ix©) = I(x)).

Therefore, forx € S:

§7®(X) “ < H[J(X(O))]_lu [3x@) — 3%, by LemmaA.1
< ac|x® —x|, by assumption
< acg_, since|x —x@| < p_. (B.19)

Step 2: Let X', X" € Sand defingp : R — R" by ¢(t) = (X" + t (X' — X")).
Then by the chain rule [72, section 2.4]:

d¢ _ aq) 7 12 1" / "
gi O =5 O+ =xD) x (=X,
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and so:
d(x) — d(X")
= ¢ —¢(0),
t=1 d¢
/t—o d_t(t) dt,

by the fundamental theorem of integral calculus,
(see Theorem A.2 in Section A.4.4.1 of Appendix A)

=t 8<D 4 / 4 !/ 4
= /t [aT(X +t(x—x))]x(x—x)dt.

=0
Therefore, on taking norms and using Lemma A.1:

t=1
«[zo

t=1
< / aco_ [ — x'| dt.
t=0
by (B.19) sincex” +t(x’ — x”) € S,
= ag_ ¥ x|

[®(x) — (X"

A

BaTq) (X// + t(X/ _ X//))

Ix =] dt

Step 3: By definition,aco_. = 1 — /1 —2abc < 1, so® is a contraction with
Lipschitz constanl. = aco_ < 1. Therefore, by Theorem 7.2, there
is a unique fixed poink* of ® in S and, moreover, the chord iteration
converges to*.

The fixed point x* satisfies (7.1) and (7.22Notice that:
(@) =x) = ([Ix)] gix) = 0) = (g(x*) =),

so thatx* is a solution of (7.1). Furthermore, singe € S, we have that:

*

[x® —x

< p-.

Substituting this and the Lipschitz constant= aco_ into (7.21) in the statement
of Theorem 7.2, we obtain the error estimate (7.22).

x* is the only solution within a distancep, of xX® We claimed that there is only

one fixed point ofb (and solution of (7.1)) in the sg¢k € R" ||| x — x©@| < p4 }.

Since we have already proven that there is exactly one fixed point in its subset
{x e R"|||x —x©@]| < p_}, we must show that there are no fixed pointstoin

[x eR"|p_ < |x = x©@| < p; }. Thatis, we must show that:

(- < [x =xO < p1) = (@x) # ),
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or equivalently that:

(0- < [x=xO] < py) = (IGO)] "gx) £0).
So, let us suppose thgt_ < ||x — x@| < p,). We prove that this implies that
[J(x)] "g(x) # 0. There are two main steps.

Step 1: From (B.17):

[3(xO)] Mg(x)
= (X=X +[Ix9)] " gx®)

t=1
+ [J(x<°>)]‘1/ [IX@ +t(x = x@)) = IxD)]] x (x —x©)dt.
t=0

Therefore, by the triangle inequality (see Exercise A.3) and Lemma A.1:
[ 00|

= x=x =[] 9|

t=1
_ ”[J(x“’))]’1 ” xf [IX© 4 t(x — x©@)) — Ix@)| [x — x| dt,
t=0

t=1
> [x=x@| -b- a/ [IX@ +t(x —x@)) = I [[x — x© dt,
t=0
by assumption
t=1
> [x=x@| -b- a/ ct|x — x(o)H2 dt, since:

e J is Lipschitz with constant in the ball of radiu > p.. aboutx©;
e X©@ 4+ t(x — x©@) is contained in this ball for & t < 1; and
o (X9 +t(x —x©@)) —xO =t(x — x©@),
= [x=x@| —b—ac|x—x©|*/2, onintegrating (B.20)
Step 2: We claim that the right-hand side of (B.20) is greater than zero for:
p- < [x =xO| < ps.
Consider the quadratic function:
p —b—ac(p)?/2. (B.21)

Ithas zerop_ = (1—+/1— 2abo/(ac) and(1+ /1 — 2abg)/(ac). Fur-
thermore, the coefficient @p)? in (B.21) is negative, so (B.21) is positive

for p inthe rangeo_ < p < (1+ +/1—2abo)/(ac).
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Now let p = |x —x©@|. By assumptionp_ < |x —x@| < p,
but o, < (14 +/1— 2abo)/(ac) by definition, so (B.21) is positive for
p = ||x —x©@] inthe rangep_ < p < p.. Thatis:

[x = x@| —b—ac|x - x(°)||2/2 > 0.
But, by (B.20), this means that:
196900 2 x — x| ~b—ac|x ~x®|* /2> 0

Therefore, there are no fixed points®dfin:

{x E]Rn’,o_ < HX—X(O)H <psi}.

B.4 Algorithms for linear equality-constrained minimization

Theorem 13.1 First notice that forx* to be optimal for the problem it must be
feasible, so thabx* = b.
Define the functiorr : R” — {x € R"|Ax = b} by:

vE e R, 7(€§) = X* + Z&,

which is onto{x € R"|Ax = b} by definition of Z. (See Exercise 13.1, Part (ii).)
Consider the functiop : R" — R defined by:

VE e R, ¢ (&) = f(z()).

The functiong is partially differentiable with continuous partial derivatives since
it is the composition off andz, which are both partially differentiable with con-
tinuous partial derivatives. (See Exercise 13.1, Part (iii).)

By hypothesisx* e argminrn{f(X)|Ax = b}. Therefore, by Theorem 3.5,
there existg* € argmin. g ¢ (§) such that* = 7(§*).

By Theorem 10.3 applied to the unconstrained problem ming (§), we have
thatVip (£*) = 0. But, ¢ (e) = f (z(e)), SO:

0
9%

ot

i3

= %(X*)Z, by definition ofr and by Exercise 13.1, Part (iii),

&Y = E?—;(r(f;‘*)) X (¢), by the chain rule [72, section 2.4],
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so thatVip (£*) = Z'Vf (x*). Thatis,Z'Vf(x*) =0. O

B.5 Algorithms for linear inequality-constrained minimization

Theorem 17.1 ([84, section 14.4].) Consider tleguality-constrained problem:
mﬁ{n{ f(X)|AXx =b, C;x =d,, VL € A(X")}. (B.22)
xeR"

Problem (B.22) includes all the constraints of Problem (17.1) that were satisfied
with equality byx*. The active inequality constraints from Problem (17.1) have
been included as equality constraints in Problem (B.22).

We are going to apply our earlier results #guality-constrained problems to
Problem (B.22) to prove the theorem. We divide the proof into three parts:

(i) showing thatx* is a local minimizer of Problem (B.22),
(i) using the necessary conditions of Problem (B.22) to defmand * that
satisfy the first four lines of (17.2), and
(iii) proving thatu* > 0.

x* is a local minimizer of Problem (B.22) We prove this by contradiction. Sup-
pose thai* is not a local minimum of Problem (B.22). We consider the implica-
tions of this supposition.

For any? ¢ A(x*) we have thaC,x* < d,. By continuity of the continuous
functionCx, let€ > 0 be small enough such that:

Ve ¢ A(X*), ¥x such that|x* — x| <€ C,x < d,. (B.23)

That is, the inequality constraints that are not active*aare also not active at
pointsx that are nearby t&*.

Lete > 0 be given. By hypothesig; is not a local minimum of Problem (B.22).
Therefore, by (2.27), there exists such that:

[x* = x| < minfe, &},
= €
fx) < (),
Ax¢ = b,

Ve € A(XY), Cx¢ = d,.
But these, together with (B.23) mean that there is a pdithat:
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e is within e of x*,
e is feasible for Problem (17.1), and
e has a smaller value of the objective.

Furthermore, such a poirt exists for anyg > 0. Thereforex* is not a local min-
imum of Problem (17.1). This is a contradiction,»suis in fact a local minimizer
of Problem (B.22).

Implications of the necessary conditions of Problem (B.22)Consider Theo-
rem 13.2 applied to Problem (B.22). The objectif/as partially differentiable
with continuous partial derivatives arxd is a local minimizer of Problem (B.22).
Therefore, by Theorem 13.2:

3 € R™, Ve € A(X"), 3u; € Rsuchthatvf(x) + A+ Y~ [C]'ui =0.
LeA(X*)
(B.24)

We now consider constrainise A(x*) and constraintg ¢ A(x*) separately.
By definition,v¢ € A(x*), C,x* = d,, so that:

Ve € AXY), 1t (Cox* —dg) = 0. (B.25)

Defineu; = 0, Ve ¢ A(x*). Then, trivially,V¢ & A(x*), u;(Cyx* —d;) = 0 and,
combining with (B.25), we obtain:

ve=1,...,r, MZ(C@X* —d,) =0,
which is the second line of (17.2). Moreovg¥, & A(Xx*), [Cg]TpLz = 0 so that:

Cluwr = > [Cd'wi+ > [Cd'u,

LeA(X*) LEA(X*)
= > [Cl'w.
LeA(x*)
Therefore, combining with (B.24), we obtain:
I e R™ 3u* € R, such thavf (x*) + ATA* + CTu* =0, (B.26)

which is the first line of (17.2).

Non-negativity of u* By definition, V¢ ¢ A(x*), u; = 0 > 0. We are left with
proving thatu; > 0,V¢ € A(Xx*). Suppose that this is not true; that is, suppose
thatu; < O for somel’ € A(x*). We construct a step directiax and an upper
limit on the step sizey > 0, such thak* + ¢ Ax is feasible for O< @ < @ and f
decreases in the direction ok away fromx*.

Consider the matriXA consisting of all the rows of together with the row€,
of C for thoset € A(x*). That is, the rows of consist of:
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e themrows of A, and
e those rows ofC corresponding to the active constraints.

We assume thah has linearly independent rows. (Otherwise, consider a maximal
subset of the rows oA that are linearly independent and that includes the row
corresponding to constraidt) Using the analysis in Section 5.8.1.2 we can solve
the equationAAx = —ly for A, wherel, is a vector that has zeros everywhere
except in the position corresponding to inequality constréiinée are going to
show thatx* + aAx is feasible for Problem (17.1) fax sufficiently small and
positive. To do this, we will, in order, consider feasibility with respect to:

¢ the equality constraints,

¢ the inequality constraints that are activexatexcept for constrairt’,
e constraint’, and

e the constraints that are inactivexdat

We have that:

Vo € R, A(X* +aAX) = AX* + aAAX,
= b+ a0,
by assumption om* and construction of\x,
= b,
Vo € R, VL € A(X*) \ {€'},
Ci(X*+aAX) = Cyx*+ aC,AX,
= dy + a0,
by assumption om* and construction of\x,
de,
de,
VYa > 0,Cp(X* +aAX) = CupX*'+aCyAX,
de + aCyp AX,
de + a(—1), by construction ofAx,

IA

< dg/.
By continuity,3o > 0 such that:
Ve & A(XY), Co(X* 4+ a AX)

C(X* + O[C(AX,
d; + aC,Ax, sincel ¢ A(X*),
dy, forO<a <a.

IN A

That is, movement in the directiaofx is feasible for step-sizes® « < @. More-
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over,

vixTax = —[aTAAx — [n]TCcax, by (B.26)
—u;Cp AX, by construction ofAx,
= —uy,(=1), by construction ofAx,

< 0, sinceu;, < 0 by assumption.

But this means thaf decreases in the directiakx from x* and there are feasible
steps in this direction. This contradicts the local optimalitytdf Therefore, no
such{’ existsand s > 0. O

Theorem 17.3 By Item (iv), x* is feasible. Consider any other feasible poiht
R". That is, considex’ such that:
AX =b,Cx <d.
We haveAx = AX* = b, SOAXX' — x*) = 0 and:
ATAX — x*) = 0. (B.27)

We now consider constrainise A(x*) and constraintg ¢ A(x*) separately.
Fore ¢ A(x*), Cyx* < dp and Item (iii) implies thaj.; = 0. Therefore,

Ve & A(X*), u;Ce(X' — x*) = 0. (B.28)
Also, sinceC,x’ < d, for all £ and sinceC,x* = d, for £ € A(x*), we have:

Ve € A(XY), Co(X — XY Cx' —dg,

S df - df’
0.

Therefore, since; > 0 for £ € A(x*), we have:

Ve € AXY), u;Ce(x' — x*) < 0. (B.29)
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We have:

f(x) > f(x")+ Vi) —x), by Theorem 2.6, noting that:

f is partially differentiable with continuous partial derivatives
by Item (i) of the hypothesis,
f is convex on the convex st € R"|Ax = b, Cx < d}; and
by Item (iv) of the hypothesis and construction,
X, x*e{xeR"Ax=b, Cx <d},

= f(x) = [A +C] (= x,

by Item (ii) of the hypothesis

= o) = [TTAK —x) = [w]'C —x,

= f(x) - [w]'Cx)X —x), by (B.27)

= f)— D mC =x) = D puiCux —x"),

LeA(x*) EA(X)
= f(x)— ) uiCux'—x"), by (B.28)
LeA(x*)

v

f(x*), by (B.29)

Thereforex* is a global minimizer off on{x €e R"|/Ax=b,Cx <d}. O

B.6 Algorithms for non-linear inequality-constrained minimization

Theorem 19.4 By Item (v), x* is feasible. Consider any other feasible poiht
R". That is, considex’ such that:

AX =b,hx) <O0.
We haveAx = AX* = b, SOAXX' — x*) = 0 and:
DATTAX = x*) = 0. (B.30)

We now consider constrainise A(x*) and constrainté ¢ A(x*) separately.
Fore ¢ A(x*), h(x*) < 0 and Item (iv) implies that; = 0. Therefore,

Ve & AX), uiKe (X)) (X' — x*) =0, (B.31)

whereK, is thel-th row of K. Also, sinceh,(x’) < 0for all¢ and sincé,(x*) = 0
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for £ € A(x*), we have:

Ve e A(XY), hy(X) —hXx*) = hyx) -0,

A
©

We have that:
he(X') = he(X*) + Ke(X) (X" = x¥),
by Theorem 2.6, noting thdt, is partially differentiable with continuous partial

derivatives and is convex by Item (i). Therefore, sipge> 0 for £ € A(x*), we
have:

Ve e AXY), uKe(x) (X" = x*) < 0. (B.32)
By Item (i), h is convex so thafx € R"|Ax = b, h(x) < 0} is a convex set. We
have:
fx) > fx")+ Vi) = xH, by Theorem 2.6, noting that:
f is partially differentiable with continuous partial derivatiyes
by Item (ii) of the hypothesis,
f is convex on the convex sgt € R"|Ax = b, h(x) < 0}; and
by Item (v) of the hypothesis and construction,
X', x* € {x e R"Ax = b, h(x) < 0},
= 0 — [AR + KOO T o0 = x),
by Item (iii) of the hypothesis
= f(x) = [WTAX = x) = [W]TK &) = xY),
= O - [w1'KeH K —x), by (B.30)
= fO) = D KOO =x) = Y7 KX = x),

LeA(X*) CEA(X*)
= )= ) K xhHK = x*), by (B.31)
LeA(X*)

> ), by (B.32)

Thereforex* is a global minimizer off on{x € R"|Ax = b, h(x) < 0}. O





