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Appendix A

Mathematical preliminaries

In this appendix we introduce some notation and mathematical background that we
will need throughout the book.

A.1 Notation

A.1.1 Universal and existential quantifiers

Definition A.1 The symbol∀ means “for all.” A statement such as “∀x” followed by a
condition onx means that all values ofx satisfy the condition. The symbol∃means “there
exists.” A statement such as “∃x” followed by a condition onx means that at least one
value ofx satisfies the condition.2

A.1.2 Sets

Definition A.2 A set is an unordered collection of elements. Sets will be denoted by
symbols such asS andP. We will use the symbols{ and} to delimit the specification of
the elements of a set.
The symbol∈ means “is an element of.” Two sets are equal if every element of the first is
an element of the second and every element of the second is an element of the first. The
set differenceS \ P is the set of those elements ofS that are not inP.
The symbol⊆ means “is a non-strict subset of,” which is to say that every element of the
first set is also an element of the second set, but we allow for the possibility of equality of
the two sets. IfP ⊆ S but P 6= S then we say thatP is astrict subsetof S. We use the
symbol symbol⊂ to mean “is a strict subset of,” which is to say that every element of the
first set is also an element of the second set, but the sets are not equal.2

For example,S = {1,5,2} is the three element set consisting of the numbers 1, 2,
5. The statement “1∈ {1,5,2}” means that the number 1 is an element of the three
element set{1,5,2}, (which is a true statement.) The statement “{1} ⊂ {1,5,2}”
means that the set consisting of the number 1 is a strict subset of the three element
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set{1,5,2}, (which is a true statement.) Also, “{1,5,2} ⊆ {1,5,2}” means that
the three element set{1,5,2} is a non-strict subset of the three element set{1,5,2},
(which is also a true statement.) Finally,{1,5,2} \ {1,3} = {5,2}.

Definition A.3 We defineZ to be the set ofintegers. The setZ+ is the set of non-negative
integers, whileZ++ is the set of strictly positive integers.
We defineR to be the set ofreal numbers. The setR+ is the set of non-negative real
numbers, whileR++ is the set of strictly positive real numbers.
We defineK to be the set ofcomplex numbers. 2

Definition A.4 Given two setsS andP, theCartesian productS×P is the set of all ordered
pairs such that the first member of the pair is an element ofS and the second member of
the pair is an element ofP [104, section 1.1]. We writeSn for the set of all ordered lists
consisting ofn (possibly non-distinct) elements ofS. We say then-fold Cartesian product
of S with itself. We writeSm×n for the set of all ordered lists ofm elements, each element
itself being a member ofSn. We say them× n Cartesian product ofS with itself. Given
a collection of setsS1, . . . , Sn, the Cartesian product of them is the set of all ordered
lists, with each list consisting of elements ofSk, k = 1, . . . , n, respectively, and is written∏n

k=1 Sk. 2

Definition A.5 Then-fold Cartesian product ofR+ with itself is called thenon-negative
orthant and is denotedRn+. Then-fold Cartesian product ofR++ with itself is called the
strictly positive orthant and is denotedRn++. If M is a set thenRM is the set of all vectors
having entries indexed by the elements in the setM. 2

A.1.3 Matrices, vectors, and scalars

Definition A.6 A vector is an element of a Cartesian product of sets, typically a Cartesian
product of the formRn. We will usually think of the list that specifies the vector as being
arranged as acolumn of n entriesor components. We sometimes say acolumn vector to
emphasize this. We can also define arow vector to be a list arranged as a row of entries.
A matrix is an element of anm× n Cartesian product and we can think of the list that
specifies the matrix as being arranged as:

• m rows ofn entries each, or
• n columns ofm entries each.

A particular entry of a matrix or vector will be indicated by one or more subscripts on
the symbol for the matrix or vector. By default, the subscripts are numbered consecu-
tively from 1. For examplex ∈ Rn will usually denote the vector consisting of the entries
x1, . . . , xn. However, we will occasionally depart from this convention if it is more conve-
nient to use non-consecutive numbering or to use other ways to list the entries of the vector.
We will usually represent the entries of the vector by enclosing them with square brackets,

so that in our example,x =




x1
...

xn


. Occasionally, we will represent a vector having two
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or three entries by enclosing them with round brackets and separating entries by commas.
For example,(x, y, z) is a vector with entriesx, y, andz.

For a matrix, the first subscript indexes the rows while the second subscript indexes the
columns. Sometimes we will separate the first and second subscript with a comma to avoid
ambiguity. Thetranspose operator, denoted by a superscript†, interchanges rows and
columns of a vector or matrix.2

For example,R × R = R2 is the set of all ordered pairs of real numbers. Each

element ofR2 is a 2-vector. The entries ofx ∈ R2 arex1 andx2, so thatx =
[

x1

x2

]
.

The setRn is the set of all ordered lists ofn real numbers. Each element ofRn

is ann-vector. The setRn is also calledn-dimensional Euclidean space, since it
generalizes our notion of three-dimensional space for which “Euclidean geometry”
applies. Moreover, forx ∈ Rn, x† ∈ R1×n is thetransposeof x; that is,x† is a row
vector withk-th entry equal to thek-th entry of the column vectorx.

The setRm×n is the set of allm× n matrices of real numbers. Each element
of this set is a matrix. For example,R2×3 is the set of all 2× 3 matrices. For
A ∈ R2×3, the entries ofA are indexed as follows:

A =
[

A11 A12 A13

A21 A22 A23

]
.

For A ∈ Rm×n, A† is the transposeof A; that is, A† is ann × m matrix with
`k-th entry equal to thek`-th entry ofA.

Definition A.7 A matrix A ∈ Rm×n is square if it has the same number of rows and
columns; that is, ifm= n. 2

Definition A.8 The diagonal of a matrix A ∈ Rm×n is the collection of entriesAkk,
k = 1, . . . ,min{m, n}, where min{m, n}means the smaller ofm andn. A diagonal matrix
is a matrix with:

• the same number of rows and columns (that is, a square matrix), and

• zero entries everywhere except on its diagonal.

2

Definition A.9 A matrix A ∈ Rm×n is diagonally dominant if:

∀k, Akk ≥
∑

6̀=k

|Ak`|,

∀k, Akk ≥
∑

6̀=k

|A`k|.
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A matrix A ∈ Rm×n is strictly diagonally dominant if:

∀k, Akk >
∑

6̀=k

|Ak`|,

∀k, Akk >
∑

6̀=k

|A`k|.

2

Definition A.10 Let A ∈ Rn×n be a square matrix. We define thedeterminant of A,
denoted det(A), as follows. Ifn = 1 then det(A) is the single entry in the matrix itself.
The determinant of ann × n matrix A can be calculated as the sum ofn terms. Thek-th
term in the sum is given by the product of:

• (−1)k+1,
• A1k, and
• the determinant of the(n− 1)× (n− 1) sub-matrix ofA obtained by deleting the first

row and thek-th column ofA.

2

The definition of determinant leads to a recursive algorithm for calculating the
determinant having computational effort that increases with the factorial ofn, that
is with n(n− 1)(n− 2) · · ·1, which we denoten!

We define some particular constant matrices and vectors in the following.

Definition A.11 Then × n identity matrix I ∈ Rn×n is a diagonal matrix with ones on
the diagonal. We defineIk ∈ Rn to be thek-th column of the identity matrix; that is, the
vector with zeros everywhere except in thek-th entry, which has value 1.
We define0 and1, respectively, to be matrices or vectors of all zeros and all ones, respec-
tively. The dimensions of0 and1 depend on the context. They will often ben-vectors of
all zeros and all ones, respectively.2

A.1.4 Functions

Definition A.12 By f : S → P we mean thatf is a function that takes elements from
thedomain setS and returns elements (function values) from therangesetP. That is, for
each elementx ∈ S there is a well-defined valuef (x) ∈ P. Sometimes we writef (•) for
f to emphasize thatf is a function. To define a function we must specify the value of the
function for each element of its domain.2

In this book, we will always writef (x) for the value of the functionf at x and
we will write f or f (•) for the function itself. That is, the symbolf (x) is not a
function: it is the value of the functionf , evaluated atx. Usually, we think of the
setsS andP as being disjoint; however, sometimes we may haveS = P, S ⊆ P,
or P ⊆ S, or sometimes one of the sets may be a subspace of the other. (See
Definition A.51.)
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Definition A.13 Let f : S→ P and suppose thatS ⊆ S. Then therestriction of f to S is
the function that is defined onS and which matchesf on this domain. We usually use the
same symbol for a function and its restriction and distinguish the two by context.2

A.1.5 Alphabetical conventions

We will usually use Greek capital letters and italic Roman capital letters for ma-
trices (and matrix-valued functions) and usually use Greek lower case and italic
Roman lower case letters for vectors (and vector-valued functions.) We will use
both capital and lower case letters for scalars (and scalar-valued functions.) The
context will make clear whether a symbol stands for a scalar or stands for a vector
or matrix. If we define a vector,x ∈ Rn say, then we will occasionally define the
corresponding capital letter,X in this case, to be thediagonalmatrix inRn×n with
diagonal entries equal to the corresponding entries ofx. That is,X = diag{x`}. For

example, ifx =



1
2
3


 ∈ R3 thenX =




1 0 0
0 2 0
0 0 3


 ∈ R3×3. (TheMATLAB func-

tion diag creates such a diagonal matrix from a vector.)
We will typically usually use Greek and italic Roman letters such asα, B, 0 that

are near to the beginning of the Greek or Roman alphabets forconstantsandpa-
rameters; that is, scalars, vectors, or matrices that have entries that do not change
or are held constant temporarily. We will use italic letters such asf, g, h that are
further in to the Roman alphabet (and sometimes use their Greek cognates such as
φ, γ , andη) for functions. We will occasionally not follow this convention. For
example, we will occasionally useP andQ to stand for vectors, useβ, J, andK
to stand for functions, and useγ , η, ρ, andχ to stand for parameters and vectors.

We will use italic Roman letters such asj, k, `, N and the Greek letterν for
counters. We will usek, `, and, occasionally,j andi , to index entries of vectors.
(We will usually, but not always, avoid indexing entries of vectors with the symbol
i to avoid confusion with the symbol for electrical current. In the discussion of
complex numbers, we write

√
−1 instead ofi or j so that we can use the symbolsi

and j as counters.) The lettersn,m, r, s will be reserved for the number of entries
in particular vectors.

We will typically use italic letters such asx, y, z that are near to the end of the
Roman alphabet and their Greek cognates for variables. The symbol1 ligatured
before a symbol for a variable will be used to denote a new variable that represents
a changein the value of the original variable. For example,1x denotes a change
in x. The letterst, T, θ and calligraphic letters such asA,B,X ,Y,Z will be used
in a variety of roles. An overline over or underline under a symbol for a variable
means a constant of the same dimension that represents a bound on the variable or
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function represented by the symbol. For example, forx ∈ Rn, the symbolsx ∈ Rn

andx ∈ Rn represent constant vectors that are lower and upper bounds forx.
In some case studies, we need to distinguish sub-systems or components. We

will use arabic numerals and non-italic lower case letters such as a, b,. . ., f, g to
distinguish these components. These symbols should not be confused with the
corresponding italic symbols used for functions and vectors.

A.1.6 Superscripts and accents

We use superscripts and accents in several ways as specified in the following.

Definition A.14 To denote anoptimal or desired value of a decision vector satisfying
some criterion, we will use a superscript? (5-pointed star). For example,x? will denote
an optimal value of the vectorx ∈ Rn. We will occasionally consider the sensitivity of
an optimal value with respect to the parameterχ . In these cases, we will abuse notation
slightly and re-interpret,x? say, to be a function representing the minimizer of a problem
as a function ofχ . We will use these conventions and natural generalizations of them
throughout the book without further comment.2

Definition A.15 We will use superscript∗ (asterisk) to representcomplex conjugate. 2

For definitions and theorems, we will often need to refer to one or moretypical
vectors or matrices. To distinguish the vectors and matrices, we will use super-
scripts and accents. For example:

• x, x′, andx′′ are three different vectors,
• x, x̃, andx̂, are three different vectors, and
• if ε ∈ R then we might distinguish a vectorxε for each possible value ofε.

If f : Rn → R then we might distinguish a particular value or bound on the
range of f by adding a superscript or accent. For example, we will usually write
f ? for the optimal value of a function, where optimal is defined according to some
criterion. As noted above, the individualcomponentsor entries of vectors are
denoted by subscripts, so thatxk andx′k are thek-th components of the vectorsx
andx′, respectively.

Definition A.16 Let x, x′ ∈ Rn. We define thevector relations =,≥,>,<, and≤,
respectively, by:

(x = x′) ⇔ (xk = x′k, ∀k = 1, . . . , n),

(x ≥ x′) ⇔ (xk ≥ x′k, ∀k = 1, . . . , n),

(x > x′) ⇔ (xk > x′k, ∀k = 1, . . . , n),

(x < x′) ⇔ (xk < x′k, ∀k = 1, . . . , n),

(x ≤ x′) ⇔ (xk ≤ x′k, ∀k = 1, . . . , n).
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That is, when a relation is used between vectors, the relation applies component-wise.2

Definition A.17 The set ofextended real numbersis the setR ∪ {−∞,∞} [104, sec-
tion 2.3]. Wedefine−∞ and∞ to have the following properties:

∀α ∈ R, −∞ < α <∞,
α +∞ =∞,
α + (−∞) = −∞.

An extended real function f on S ⊆ Rn is a function that, for eachx ∈ S, either takes
on a value inR or takes on one of the special values−∞ or∞ [104, section 2.3]. That
is, for eachx ∈ S, the value off (x) is an extended real number. We write thatf : S →
R ∪ {−∞,∞}. 2

We will be careful never tosubtract∞ from ∞, nor to add∞ to −∞: these
operations are not defined.

Definition A.18 We will use superscripts in parentheses to distinguish successive elements
of a sequence. Usually, the sequences we consider will be the iterates produced by an
iterative algorithm. Theinitial guess for an iterative algorithm will be denoted with a
superscript(0), such asx(0); subsequent iterates will appear asx(1), x(2), . . . , x(ν), . . .. To
represent the set of all iterates,{x(0), x(1), . . .}, that is, the complete sequence, we will
write {x(ν)}∞ν=0.

We use the superscript parentheses to avoid confusion withexponentiation. If we want
to represent the square ofxk, for example, we will write(xk)

2, to clearly distinguish it
from x(2)k , which is the value of thek-th component of the second iterate of the sequence

{x(ν)}∞ν=0. Naturally,
(

x(2)k

)3
is the cube of thek-th component of the second iterate of this

sequence.

Occasionally, we will need to consider an infinite sub-collection of elements of a sequence.
For example, we might consider the sub-collection consisting of all the elements with even
numbered iteration count:{x(0), x(2), x(4), . . . , }. This is called asub-sequenceof the
sequence{x(ν)}∞ν=0.

We will sometimes use superscript in parenthesis to distinguish elements of a finite collec-
tion.

2

A.2 Types of functions

We will classify functions by their functional form and by their properties. First,
we will consider linear, affine, and quadratic functional forms and then we will
consider polynomials and other functions.
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A.2.1 Linear, affine, and quadratic

Definition A.19 A function g : Rn→ Rm is linear if it is of the form:

∀x ∈ Rn, g(x) = Ax,

for some fixedA ∈ Rm×n. A functiong : Rn→ Rm is affine if it is of the form:

∀x ∈ Rn, g(x) = Ax− b,

for some fixedA ∈ Rm×n andb ∈ Rm. Recall that thè -th entry ofAx is
∑n

k=1 A`kxk. In
other words, thè-th entry of Ax is determined by thè-th row of A and byx; namely, it
is the sum of the products of:

• the entries in thè-th row of A, and

• the corresponding entries inx.

Then:g`(x) =
∑n

k=1 A`kxk − b`. 2

Sometimes, authors use the word linear to refer both to linear and to affine func-
tions.

Definition A.20 A function f : Rn→ R is quadratic if it is of the form:

∀x ∈ Rn, f (x) = 1

2
x†Qx+ c†x + d,

= 1

2

n∑

k=1

n∑

`=1

xk Qk`x` +
n∑

k=1

ckxk + d, (A.1)

where:

• Q ∈ Rn×n,

• c ∈ Rn, and

• d ∈ R.

2

The factor1
2 in (A.1) is to simplify the functional form of the first derivative of the

quadratic function. (See Section A.4.3.1 for definition of the first derivative.) If
Q = 0 then the function is linear or affine. We often have thatd = 0.

Definition A.21 A matrix Q ∈ Rn×n is symmetric if ∀k, `, Qk` = Q`k. 2

We can assume thatQ in (A.1) is symmetric because, if it is not, we can replace
it by Q[ = 1

2(Q + Q†), which is symmetric and yields the same value for the
function, as Exercise A.1 shows.
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A.2.2 Polynomial

Definition A.22 Let:

• D ∈ Z+ (Z+ is the set of non-negative integers; see Definition A.3), and
• a0,a1, . . . ,aD ∈ R,

and define the functiong : R→ R by:

∀x, g(x) =
D∑

k=0

ak(x)
k.

This function is apolynomial of degreeD in the single variablex. A polynomial is said
to be affine, quadratic, cubic, or quartic ifD = 1, 2,3, or 4, respectively.2

Linear, affine, quadratic, cubic, and quartic functions of a single variable are
special classes of polynomials.

A.2.3 Other special functions

Definition A.23 A function f : Rn→ R is additively separableif it is of the form:

∀x ∈ Rn, f (x) =
n∑

k=1

fk(xk),

where fk : R → R, k = 1, . . . , n. The function ismultiplicatively separable if it is of
the form:

∀x ∈ Rn, f (x) =
n∏

k=1

fk(xk).

2

That is, a function is additively separable if it can be expressed as the sum of
functions that each depend only on one entry ofx. A function is multiplicatively
separable if it can be expressed as the product of functions that each depend only
on one entry ofx. There are various other notions of separability. For example,
a function is partially separable if it can be expressed as the sum of functions that
each depend only on a particular sub-vector ofx.

Definition A.24 A functionη↗ : R→ R is monotonically increasingor monotonically
non-decreasingif:

∀x, x′ ∈ R, (x < x′)⇒ (η↗(x) ≤ η↗(x′)).
It is strictly monotonically increasing if:

∀x, x′ ∈ R, (x < x′)⇒ (η↗(x) < η↗(x′)).
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Fig. A.1. An example of
a monotonically increasing
function.
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Fig. A.2. An example of a
strictly monotonically in-
creasing function.

Similarly, a functionη↘ : R → R is monotonically decreasingor monotonically non-
increasing if:

∀x, x′ ∈ R, (x < x′)⇒ (η↘(x) ≥ η↘(x′)).
It is strictly monotonically decreasingif:

∀x, x′ ∈ R, (x < x′)⇒ (η↘(x) > η↘(x′)).

2

The superscripts↗ and↘ are meant to graphically indicate the nature of mono-
tonic functions. We can refer toη↗ as “eta-up” and refer toη↘ as “eta-down”
as mnemonics for their properties. Figures A.1 and A.2 show a monotonically
increasing and a strictly monotonically increasing function, respectively.
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Definition A.25 Let S ⊆ S ⊆ Rn, P ⊆ Rr , andτ : P→ S. (Recall thatτ : P→ S means
thatτ(ξ) is defined for eachξ ∈ P and that∀ξ ∈ P, τ (ξ) ∈ S.) We say thatτ is onto S if:

∀x ∈ S, ∃ξ ∈ P such thatx = τ(ξ).
We say thatτ is one-to-one(or 1–1) if:

∀ξ, ξ ′ ∈ P, (ξ 6= ξ ′)⇒ (τ (ξ) 6= τ(ξ ′)).
2

Definition A.26 We say that there is a1–1 and onto correspondencebetween two setsP
andS if:

∃τ : P→ S such thatτ is 1–1 and onto.

2

Definition A.27 If τ : P→ S is 1–1 and onto then theinverseτ−1 : S→ P is defined by:

∀x ∈ S, τ−1(x) is the unique elementξ ∈ P such thatτ(ξ) = x.

2

If τ : P→ S is 1–1 and onto then its inverseτ−1 : S→ P is also 1–1 and onto.

A.3 Norms

We define a measure of the length of a vector that generalizes our notion of length
in space. This measure is called anorm [104, section 10.1]. We then define the
notion of the norm of a matrix.

A.3.1 Vector

Definition A.28 A norm (or vector norm) onRn is a function,‖•‖ : Rn → R, with the
following properties:

(i) ∀x ∈ Rn, ‖x‖ ≥ 0,
(ii) ∀x ∈ Rn, (‖x‖ = 0)⇔ (x = 0),

(iii) ∀x, y ∈ Rn, ‖x + y‖ ≤ ‖x‖ + ‖y‖,
(iv) ∀x ∈ Rn,∀α ∈ R, ‖αx‖ = |α| ‖x‖.

2

The most familiar example of a norm onRn is theEuclidean length, usually
denoted‖•‖2 and defined by:

∀x ∈ Rn, ‖x‖2 =
√√√√

n∑

k=1

(xk)2.
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Fig. A.3. Illustration of
the triangle inequality in
two dimensions.

This norm is also called theL2 norm and is the same as our intuitive notion of
length in 1, 2, or 3 dimensions. Property (iii) of a norm is called thetriangle
inequality because it says that the sum of the lengths of two sides of a triangle
exceeds the length of the other side. The triangle inequality is illustrated forn = 2
in Figure A.3. In this figure, the sum of the lengths of the vertical and horizontal
sides of the triangle exceeds the length of the oblique side. The same observation
applies for each of the other two pairs of sides. Properties (iii) and (iv) imply that
a norm is a continuous function. (See Definition A.35 and Exercise A.8.)

There are many other norms, such as:

• theL1 norm ‖•‖1 defined by:

∀x ∈ Rn, ‖x‖1 =
n∑

k=1

|xk|,

• theL∞ or infinity norm ‖•‖∞ defined by:

∀x ∈ Rn, ‖x‖∞ = max
k=1,...,n

{|xk|},

and
• weighted norms‖•‖W defined in terms of a non-singular weighting matrix (see

Definition A.49)W ∈ Rn×n and any other norm‖•‖ onRn by:

∀x ∈ Rn, ‖x‖W = ‖W x‖ .
The choice of norm depends on the application. However, for any norms‖•‖ and
‖•‖′ onRn, there are constantsκ, κ ∈ R++ such that:

∀x ∈ Rn, κ ‖x‖ ≤ ‖x‖′ ≤ κ ‖x‖ .
(See Exercise A.2.) In more general spaces thanRn this is not necessarily true.

In several theorems, our results will be stated in terms of norms. Usually, the
result is independent of the particular choice of norm. In this case we will use
the symbol‖•‖ to denote any particular norm. Of course, we must use the same
norm consistently throughout the theorem. Occasionally we will use‖•‖ to refer
to norms in two different spaces, sayRn andRm. This is a slight abuse of notation,
since the norms are, strictly speaking, different and should be distinguished nota-
tionally. Naturally, we must, for example, use the norm consistently forRn and
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consistently forRm. However, unless otherwise specified, the norm onRn could
be, say,‖•‖1, while the norm onRm could be, say,‖•‖2.

A.3.2 Matrix

We would also like to “measure” matrices. We make the following definition.

Definition A.29 A norm (or matrix norm ) onRm×n is a function,‖•‖ : Rm×n → R,
with the following properties:

(i) ∀A ∈ Rm×n, ‖A‖ ≥ 0,
(ii) ∀A ∈ Rm×n, (‖A‖ = 0)⇔ (A = 0),

(iii) ∀A, B ∈ Rm×n, ‖A+ B‖ ≤ ‖A‖ + ‖B‖,
(iv) ∀A ∈ Rm×n,∀α ∈ R, ‖αA‖ = |α| ‖A‖.

2

We often use the particular matrix norm described in the following.

Definition A.30 Suppose we have two vector norms‖•‖ defined onRn andRm, respec-
tively, and a matrixA ∈ Rm×n. Then theinduced matrix norm ‖•‖ : Rm×n → R is
defined by:

∀A ∈ Rm×n, ‖A‖ = max
‖x‖=1

‖Ax‖ , (A.2)

where:

• the norm in‖x‖ is the norm onRn,
• the norm in‖Ax‖ is the norm onRm, and
• the norm in‖A‖ is the induced matrix norm that is being defined.

2

(The maximum on the right-hand side of (A.2) exists by Theorem 2.1 since the max
is over a bounded set (see Definition A.46) and the norm is a continuous function.
See Definition A.35 and Exercise A.8.) An induced matrix norm is a matrix norm
according to Definition A.29. (See Exercise A.4.) If the norms onRn andRm are,
say, both theL2 norms or both theL1 norms, then we will typically use the same
symbol for the norm onRn, the norm onRm, and the induced matrix norm. The
appropriate norm will be clear from the context. However, if the norms onRn and
Rm are different then the symbols should be more carefully distinguished.

We have the following.

Lemma A.1 Suppose that we have three vector norms‖•‖ defined onRn,Rm, andRr ,
respectively. Then:

∀A ∈ Rm×n, x ∈ Rn, ‖Ax‖ ≤ ‖A‖ ‖x‖ , (A.3)

∀A ∈ Rm×n, B ∈ Rn×r , ‖AB‖ ≤ ‖A‖ ‖B‖ ,
where each matrix norm is induced by the corresponding pair of vector norms.



784 Mathematical preliminaries

Proof First observe that:

∀x 6= 0,

∥∥∥∥
1

‖x‖x

∥∥∥∥ =
1

‖x‖ ‖x‖ , by Property (iv) of norms, since|1/ ‖x‖| = 1/ ‖x‖,
= 1.

Therefore,

‖Ax‖ =
∥∥∥∥‖x‖ A

1

‖x‖x

∥∥∥∥ , multiplying and dividing by a constant,

= ‖x‖
∥∥∥∥A

1

‖x‖x

∥∥∥∥ , by Property (iv) of norms, since| ‖x‖ | = ‖x‖,

≤ ‖x‖ ‖A‖ , by definition of‖A‖, since
∥∥∥ 1
‖x‖x

∥∥∥ = 1.

Now let‖y‖ = 1. Then,

‖ABy‖ ≤ ‖A‖ ‖By‖ , by (A.3) applied toA ∈ Rm×n andBy ∈ Rn,

≤ ‖A‖ ‖B‖ ‖y‖ , by (A.3) applied toB ∈ Rm×r andy ∈ Rr ,

= ‖A‖ ‖B‖ , since‖y‖ = 1.

Taking the maximum of the left-hand side over all vectors having norm 1, we obtain
from (A.2) that‖AB‖ ≤ ‖A‖ ‖B‖. 2

If the norms onRn andRm are bothL2 norms, then we write‖•‖2 for the induced
matrix norm and call it theL2 matrix norm . For anyA ∈ Rm×n, ‖A‖2 is equal
to the maximumsingular value of A [45, section 2.2.5.5][55, appendix]. The
singular values ofA are the non-negative square roots of the eigenvalues ofA†A.
If A ∈ Rn×n is symmetric then‖A‖2 is equal to the largest of the absolute values
of the eigenvalues ofA [45, section 2.2.5.5][55, appendix]. Recall the following
definition.

Definition A.31 Let A ∈ Rn×n be square and suppose that we can findλ ∈ K andξ ∈ Kn

such thatAξ = λξ . Thenλ is called aneigenvalueandξ is called aneigenvectorof A. 2

In general, there aren eigenvalues for ann× n matrix, given by the solution of the
characteristic equation:

det(A− Iλ) = 0.

Definition A.32 Vector norms‖•‖ on Rn andRm and a matrix norm‖•‖′ are called
compatible if:

∀x ∈ Rn, ∀A ∈ Rm×n, ‖Ax‖ ≤ ‖A‖′ ‖x‖ .

2
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By definition, vector norms onRn andRm and the corresponding induced matrix
norm are compatible. However, there are matrix norms which are not compatible
with any vector norm. For example, theFrobenius norm:

‖A‖F =
(

m∑

k=1

n∑

`=1

(Ak`)
2

) 1
2

is not compatible with any vector norms. More details on matrix norms are con-
tained in [45, section 2.2.4.2].

A.4 Limits

We discuss limiting properties of sequences and of functions.

A.4.1 Convergence and limits

Sequences have limiting properties embodied in the following.

Definition A.33 Let‖•‖ be a norm onRn. (See Definition A.28 for the definition of norm.)
Let {x(ν)}∞ν=0 be a sequence of vectors inRn. Then, the sequence{x(ν)}∞ν=0 convergesto a
limit x? if:

∀ε > 0, ∃N ∈ Z+ such that(ν ∈ Z+ andν ≥ N)⇒
∥∥∥x(ν) − x?

∥∥∥ ≤ ε.

We write limν→∞ x(ν) = x? or lim
ν→∞ x(ν) = x? and callx? the limit of the sequence

{x(ν)}∞ν=0. 2

Definition A.34 A sequence{x(ν)}∞ν=0 has anaccumulation point x? if some sub-sequence
of the sequence converges tox?. 2

A.4.2 Continuity

Definition A.35 A function g : Rn→ Rm is continuous atx? if there are any norms‖•‖
onRn andRm such that:

∀ε > 0, ∃δ > 0 such that
(∥∥x? − x

∥∥ ≤ δ)⇒ (∥∥g(x?)− g(x)
∥∥ ≤ ε) . (A.4)

A function iscontinuous onS ⊆ Rn if it is continuous atx? for everyx? ∈ S. If a function
is continuous onS = Rn, then it is said to becontinuousor continuous everywhere. 2

Notice that by Exercise A.2, Part (iv), for a givenε, the largest value ofδ that
satisfies (A.4) will depend on which norm is used onRn; however, it can be shown
that the property of continuity of a functiong : Rn → Rm is independent of the
choice of norm onRn andRm. In more general spaces thanRn, this is not true [82,
section 2-7].
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A.4.3 Differentiation

A.4.3.1 First derivative

Definition A.36 We say that a functionf : R→ R is differentiable at x? with respect to
x or its first derivative with respect tox exists atx? if the following limit exists:

lim
δ→0

f (x? + δ)− f (x?)

δ
.

The value of the limit is denoted
d f
dx

(x?). A function f : Rn → R is partially differ-

entiable at x? if, for k = 1, . . . , n, the first derivatives with respect toxk all exist. We

write
∂ f
∂xk

(x?) for the first derivative with respect toxk, k = 1, . . . ,n, and call them the

first partial derivatives at x?. A function g : Rn → Rm is partially differentiable if each
functiong`, ` = 1, . . . ,m, is partially differentiable.
Suppose thatf : Rn → R andg : Rn → Rm are partially differentiable atx?. That is,

suppose that
∂ f
∂xk

(x?) exists for eachk and suppose that
∂g`
∂xk

(x?) exists for eachk and`.

Then thederivative andgradient of f at x?, symbols
∂ f
∂x

(x?) and∇ f (x?), respectively,

are defined as follows:

• ∂ f
∂x

(x?) ∈ R1×n is therow vector withk-th entry equal to
∂ f
∂xk

(x?), and

• ∇ f (x?) ∈ Rn is thecolumnvector withk-th entry equal to
∂ f
∂xk

(x?).

We have that
∂ f
∂x

(x?) = [∇ f (x?)]†.

Furthermore, thederivative and gradient of g, symbols
∂g
∂x

and∇g, respectively, are

defined as follows:

• ∂g
∂x
(x?) ∈ Rm×n is the matrix with̀ k-th entry equal to

∂g`
∂xk

(x?), and

• ∇g(x?) ∈ Rn×m is the matrix withk`-th entry equal to
∂g`
∂xk

(x?).

That is,
∂g
∂x
(x?) = [∇g(x?)]†.

If the partial derivatives exist for all points in the setS ⊆ Rn then the function is said to

be partially differentiable onS. We write
∂ f
∂x

,∇ f,
∂g
∂x

, and∇g for the functions whose

values at eachx? ∈ S is given by
∂ f
∂x

(x?),∇ f (x?),
∂g
∂x
(x?), and∇g(x?), respectively. If

the partial derivatives exist for all points inRn then the function is said to be partially dif-
ferentiable or partially differentiable everywhere. (For the distinction between a partially
differentiable function and a differentiable function, see [72, section 2.3].)
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The symbol∇ is sometimes pronounced “del.” The matrix
∂g
∂x

is also called theJacobian

and we often use the symbolJ for the Jacobian of the functiong.
2

Definition A.37 If f : Rn → R is partially differentiable with continuous partial deriva-
tives andx? ∈ Rn,1x ∈ Rn, then the functionφ : R→ R defined by:

∀t ∈ R, φ(t) = f (x? + t1x)

is a differentiable function. Moreover, by the chain rule [72, section 2.4]:

dφ
dt

(0) = ∇ f (x?)†1x.

We call ∇ f (x?)†1x the directional derivative of f at x? in the direction1x since is
evaluates the rate of change off in the direction1x from x?. 2

If f is partially differentiable at a pointx? ∈ Rn but its partial derivatives are not
continuous atx? then the functionφ in Definition A.37 may not be differentiable.
(See Exercise A.9.)

A.4.3.2 Second derivative

Definition A.38 A second derivativeis a derivative of a derivative function. For a function

f : Rn → R we write
∂2 f
∂x`∂xk

for the derivative with respect tox` of the derivative with

respect toxk of f . If these functions exist for each̀andk then we say that the function is

twice partially differentiable. We then define
∂2 f
∂x2 : Rn→ Rn×n by:

∀`, k,
[
∂2 f
∂x2

]

`k
= ∂2 f
∂x`∂xk

.

We call
∂2 f
∂x2 theHessianof f and we also write∇2f and∇2

xx f for
∂2 f
∂x2 . 2

The Hessian of a function is the same as the Jacobian of its gradient. Exer-
cise A.10 shows the reason for the1

2 in Definition A.20 of a quadratic function.
Exercise A.10 shows that iff is quadratic then its Hessian is constant. Iff is
approximately quadratic, then its Hessian is approximately constant.

A.4.3.3 Symbolic conventions

Symbols and conventions for functions and derivatives are often confusing. We
will use the following convention. Each function we introduce will be defined in
terms of a “dummy variable.” The dummy variable is the argument as specified in
the definition of the function. We must specify the value of the function for each
possible value that the dummy variable can take on in the domain of the function;
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that is, the dummy variable is running over all possible values. We will then avoid
using the dummy variable in any role where it is thought of as a constant or a
particular value.

For example, suppose thatg were defined using the dummy variablex. When we
refer to the function we will write eitherg or g(•), omitting the dummy variable.
To indicateg evaluated at a particular pointx′ we writeg(x′).

To indicate the derivative of the function evaluated at a pointx′ we write
∂g
∂x
(x′).

The derivative function will be denoted
∂g
∂x

or
∂g
∂x
(•). We will avoid usingx to

stand, at the same time, for the dummy variableand for a particular point in an
expression because of the difficulty in distinguishing:

• the use ofx as the dummy variable in
∂g
∂x

from

• the use ofx in the argument of
∂g
∂x
(x).

To see this issue, consider the functiong : R→ R defined by:

∀x, g(x) = (x)3.

Then,
∂g
∂x

is the function defined by:

∀x, ∂g
∂x
(x) = 3(x)2.

If we write:
∂g
∂x
((x)2), (A.5)

then we mean the function
∂g
∂x

evaluated at the point(x)2, which is 3((x)2)2 =

3(x)4. However, we interpret the similar-looking expression
∂

∂x
[g((x)2)] as mean-

ing:

∂

∂x
[g((x)2)] = ∂g

∂x
((x)2)× ∂

∂x
[(x)2],

= 3(x)4× 2x,

= 6(x)5, (A.6)

using the chain rule [72, section 2.4]. Because it is easy to confuse (A.5) and (A.6)
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we will usually try to avoid expressions like them and we will typically use the∇
notation to denote the gradient function.

A.4.4 Integration

A.4.4.1 Fundamental theorem of integral calculus

Theorem A.2 Let f : R→ R be a differentiable function and leta, b ∈ R. Then:

f (b)− f (a) =
∫ b

t=a

d f
dt

(t)dt.

Proof See [114, section 4-8].2

A.4.4.2 Integration of non-negative function

Theorem A.3 Let f : R→ R+ be continuous and leta,b ∈ R. Then:
∫ b

t=a
f (t)dt ≥ 0.

If f (t) is strictly positive fora < t < b then the integral is strictly positive.

Proof See [114, section 4-8] and Exercise A.11.2

A.5 Sets

A.5.1 Notation

It is often convenient to define sets by collecting together all those elements from
another set, such asR or Rn, that have a particular property. We formalize this in
the following.

Definition A.39 Let 2 : S → {true, false} be a function that evaluates to either true or
false. By{x ∈ S|2(x)} we mean the subset ofS consisting of all those elementsx such
that2(x) is true. The function2 is often expressed “loosely.”2

For example,{x ∈ R2|−1≤ x1 ≤ 1}means the set of all two-vectors such that the
first entry of the two vector, namelyx1, has a value that lies between−1 and 1.

If the dummy variable in the definition of2 and the setS are clear from context,
then we sometimes omit the “x ∈ S|.” For example, if the context is clear, we might
write {−1 ≤ x ≤ 1} for {x ∈ R|−1 ≤ x ≤ 1}. If there are multiple conditions
in the definition of the set then these are separated by commas. They should be
interpreted as meaning “and” or “intersection.” For example,{x ∈ Rn|g(x) =
0, h(x) ≤ 0}means the set of vectorsx in Rn such thatg(x) = 0 andh(x) ≤ 0.
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A.5.2 Open and closed

Definition A.40 A point xc ∈ Rn is called apoint of closure or a limit point of a set
S ⊆ Rn if there is a norm‖•‖ such that:

∀ε > 0, ∃xε ∈ S such that
∥∥xε − xc

∥∥ ≤ ε.
A point xi ∈ Rn is called aninterior point of a setS ⊆ Rn if there is a norm‖•‖ such
that:

∃ε > 0 such that∀x ∈ Rn,
(∥∥∥xi − x

∥∥∥ ≤ ε
)
⇒ (x ∈ S).

The set of all limit points ofS is denoted by cl(S). The set of all interior points ofS is
denoted by int(S) and is called itsinterior . 2

Any point inS is also a limit point ofS, but in general some limit points ofS may
not be contained inS. That is,S ⊆ cl(S). Any interior point ofS is contained inS,
but in general some points ofS are not interior points ofS. That is, int(S) ⊆ S.

Definition A.41 A set S ⊆ Rn is closedif it contains all its limit points. That is,S is
closed if cl(S) = S. A setS ⊆ Rn is open if (Rn \ S) is closed or, equivalently, if every
point inS is an interior point ofS. That is,S is open if int(S) = S. 2

Definition A.42 Theboundary of a setS ⊆ Rn is defined to be the set(cl(S) \ int(S)). 2

For a pointxb on the boundary ofS ⊆ Rn there are points inS that are arbitrarily
close toxb and points not inS that are arbitrarily close toxb. A closed set contains
its boundary. For example, consider a “closed ball” as defined in the following.

Definition A.43 A closed ballof radiusρ ∈ R++ about a pointx(0) ∈ Rn is the set:
{

x ∈ Rn
∣∣∣
∥∥∥x − x(0)

∥∥∥ ≤ ρ
}
.

2

A closed ball is (not surprisingly) a closed set and contains its boundary. By Def-
inition A.40, for any interior pointxi of a setS, we can find a closed ball of some
radiusε > 0 aboutxi that is contained inS. We can also define an “open ball.”

Definition A.44 An open ballof radiusρ ∈ R++ about a pointx(0) ∈ Rn is the set:
{

x ∈ Rn
∣∣∣
∥∥∥x − x(0)

∥∥∥ < ρ
}
.

2

The interior of a closed ball is the corresponding open ball.

Definition A.45 An open set inRn containing a pointx(0) is called aneighborhood of
x(0). 2
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An example of a neighborhood ofx(0) is an open ball of radiusρ > 0 aboutx(0).

Definition A.46 A setS ∈ Rn is bounded if there existsρ ∈ R+ and a norm‖•‖ such
that∀x ∈ S, ‖x‖ ≤ ρ. 2

A closed ball is bounded. An open ball is bounded.

A.5.3 Projections

Definition A.47 Let S ⊆ Rn, let n′ ≤ n, and letP ⊆ Rn′ be defined by:

P =
{
ξ ∈ Rn′

∣∣∣ ∃x ∈ S such thatξk = xk+n−n′ , k = 1, . . . n′
}
.

The setP is called theprojection of S onto the lastn′ components ofRn. If n′ = 1 then
we callP the projection ofS on the last component ofRn. Similarly, we can define the
projection onto any other subset of the components.2

For example, ifS ⊆ R2 is the closed ball of radius 1 centered at

[
0
0

]
then the

projection ofS onto the last component ofR2 is the setP = {x1 ∈ R| − 1 ≤ x1 ≤
1} ⊆ R.

Definition A.48 Let ‖•‖ be a norm,S ⊆ Rn, andx̂ ∈ Rn. Then theprojection of x̂ on S
is the set argminx∈S

{∥∥x − x̂
∥∥} [15, sections 6.1 and 8.1].2

A.6 Properties of matrices

A.6.1 Singular and non-singular matrices

A.6.1.1 Definitions

Definition A.49 A square matrixA ∈ Rn×n is invertible if there exists another matrix in
Rn×n, (which we writeA−1 and call theinverse) that satisfies:

A−1A = AA−1 = I .

An invertible matrix is also referred to asnon-singular. If no inverse exists, thenA is
calledsingular. 2

Definition A.50 Let A ∈ Rm×n. Then we define the following.

• The range spaceof A is the setR(A) = {y ∈ Rm|∃x ∈ Rn such thaty = Ax}. (We
often abbreviate this expression by writing:{Ax ∈ Rm|x ∈ Rn}, where it is understood
that the set contains the valuesy = Ax for all x ∈ Rn.)
• Thenull spaceof A is the setN (A) = {x ∈ Rn|Ax = 0}.
2
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For example, consider the following.

• If A = 0 thenR(A) = {Ax ∈ Rm|x ∈ Rn} = {0} andN (A) = {x ∈ Rn|Ax =
0} = Rn.
• If A = 1† thenR(A) = {Ax ∈ Rm|x ∈ Rn} = R andN (A) = {x ∈ Rn|Ax =

0} = {x ∈ Rn|∑n
k=1 xk = 0}.

• If A = I thenR(A) = {Ax ∈ Rm|x ∈ Rn} = Rn andN (A) = {x ∈ Rn|Ax =
0} = {0}.

Since A0 = 0 for any matrix A, the zero vector is an element of both the range
space and the null space of any matrix.

For anyA ∈ Rm×n, we have the somewhat surprising result that any vector in
Rn can be expressed as the sum of ([55, section A.15]):

• an element of the range space ofA†, plus
• an element of the null space ofA.

That is, we have the following.

Theorem A.4 Let A ∈ Rm×n. Then,

∀x ∈ Rn, ∃λ ∈ Rm, ∃z ∈ Rn with Az= 0 such thatx = z+ A†λ.

Proof See [55, section A.15] and Exercise 5.47.2

Definition A.51 A vector subspaceof Rn is a setS ⊆ Rn with the following properties:

(i) ∀x, x′ ∈ S, x + x′ ∈ S,
(ii) ∀x ∈ S, ∀α ∈ R, αx ∈ S.

2

The setRn is a vector subspace of itself. The null spaceN (A) and range space
R(A) of a matrixA ∈ Rm×n are vector subspaces ofRn andRm, respectively.

Definition A.52 Let A ∈ Rm×n andb ∈ Rm. A set of the form{x ∈ Rn|Ax = b} is called
anaffine subspaceor a linear variety . If A ∈ R1×n and is not equal to the zero vector,
then{x ∈ R|Ax = b} is called ahyperplane. 2

The notion of a hyperplane generalizes the notion of a plane in three dimensions:
a hyperplane has exactly one less “dimension” than the spaceRn in which it is
embedded. A hyperplane inRn dividesRn into two half-spaces. The boundary of
each half-space is the hyperplane.

Definition A.53 In describing matrices, we will mention the:

• upper triangle,
• diagonal, and
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• lower triangle.

Some authors use “upper triangle” to refer to both the entries above the diagonal as well as
on the diagonal. In this book we will use upper triangle to refer to only the entries above
the diagonal. Similarly, we will use “lower triangle” to refer to only the entries below the
diagonal. By anupper triangular matrix , we will mean a matrix that has zeros in its
lower triangle. Similarly, alower triangular matrix has zeros in its upper triangle.2

A.6.1.2 Properties

Theorem A.5 A square matrixA ∈ Rn×n that is singular has the property that there exists
a non-zero value ofx such thatAx = 0. That is, the null space of a singular matrix
contains elements besides the zero vector.

Proof See [55, appendix].2

Theorem A.6 Let A ∈ Rn×n. Suppose thatB ∈ Rn×n satisfiesAB = I . ThenB = A−1
and B A= I . Similarly, if B ∈ Rn×n satisfiesB A= I , thenB = A−1 and AB= I .

Proof See [55, appendix].2

In general, for two arbitrary matricesA and B, it is not usually the case that
AB = B A. In the special case thatB = A−1, this relationship, calledcommuta-
tivity , does hold.

A.6.2 Linearly independent columns and rows

Definition A.54 Let A ∈ Rm×n, x ∈ Rn, y ∈ Rm, g : Rn→ Rm. Then:

• the column vectorAx is called alinear combination of the columns ofA,
• the row vectory†A is called alinear combination of the rows ofA,
• the functiony†g : Rn→ R is called alinear combination of the entries ofg,
• the equationy†g(x) = 0 is called alinear combination of the equationsg(x) = 0.

2

Definition A.55 A matrix A ∈ Rm×n haslinearly independent columnsif:

∀x ∈ Rn, (Ax = 0)⇒ (x = 0).

It haslinearly independent rows if:

∀y ∈ Rm, (y†A = 0)⇒ (y = 0).

If the matrix does not have linearly independent rows then we can write one of the rows as
a linear combination of the others and we say that the rows arelinearly dependent. If the
matrix does not have linearly independent columns then we can write one of the columns
as a linear combination of the others and we say that the columns arelinearly dependent.
2
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If A has linearly independent columns thenA† has linearly independent rows. If
A has linearly independent rows thenA† has linearly independent columns. In the
case thatm= n then having linearly independent columns is equivalent to the ma-
trix being non-singular and is equivalent to the matrix having linearly independent
rows. If the null space ofA has elements besides0 then the columns ofA are not
linearly independent and vice versa as Exercise A.16 shows.

Definition A.56 A basisfor a vector subspace is a linearly independent set of vectors such
that all the elements of the vector subspace can be expressed as a linear combination of the
vectors in the basis.2

If the columns of a matrixA are linearly independent, then the columns form a
basis for the range space ofA. For example,I ∈ Rn×n has linearly independent
columns and the vectors{I1, . . . , In} are a basis forRn, which is the range space of
I .

Definition A.57 Consider a matrixA ∈ Rm×n. We define:

• a row sub-matrix to be a matrix obtained fromA by deleting some of its rows, and

• acolumn sub-matrix to be a matrix obtained fromA by deleting some of its columns.

The row rank of A is the number of rows in the largest row sub-matrix ofA that has
linearly independent rows. Thecolumn rank of A is the number of columns in the largest
column sub-matrix ofA that has linearly independent columns.

A matrix A ∈ Rm×n has full row rank if its row rank is equal tom. It has full column rank
if its column rank is equal ton. A square matrixA ∈ Rn×n is invertible if and only if it has
full row rank and if and only if it has full column rank.

2

A.6.3 Positive definite and positive semi-definite matrices

Definition A.58 A matrix Q ∈ Rn×n is positive definite if:

∀x ∈ Rn, (x 6= 0)⇒ (x†Qx > 0).

A matrix Q ∈ Rn×n is negative definiteif (−Q) is positive definite.2

Definition A.59 A matrix Q ∈ Rn×n is positive semi-definiteif:

∀x ∈ Rn, x†Qx ≥ 0.

A matrix Q ∈ Rn×n is negative semi-definiteif (−Q) is positive semi-definite.2
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A.6.4 Positive definiteness on a subspace

Definition A.60 A matrix Q ∈ Rn×n is positive definite on the null space{x ∈ Rn|Ax =
0} if:

∀x ∈ Rn, (Ax = 0 andx 6= 0)⇒ (x†Qx > 0).

2

Definition A.61 A matrix Q ∈ Rn×n is positive semi-definite on the null space{x ∈
Rn|Ax = 0} if:

∀x ∈ Rn, (Ax = 0)⇒ (x†Qx ≥ 0).

2

A.7 Special results

In this section we present some special results.

A.7.1 Weierstrass accumulation principle

Although, in general, sequences may or may not converge, we have the following.

Theorem A.7 Suppose that the sequence{x(ν)}∞ν=0 is bounded. (See Definition A.46.)
Then it has a convergent sub-sequence. (See Definitions A.18 and A.34.)

Proof See [111, corollary of theorem 2 of chapter 21].2

A.7.2 l’Hôpital’s rule

In some cases, limits involving ratios can be calculated usingl’H ôpital’s rule .

Theorem A.8 Let f, g : R → R be differentiable and suppose thatlimx→0 f (x) =
limx→0 g(x) = 0. Then:

lim
x→0

f (x)

g(x)
= lim

x→0

d f
dx

(x)

dg
dx

(x)
,

assuming that the limit on the right-hand side exists.

Proof See [111, theorem 9 of chapter 11].2
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A.7.3 Implicit function theorem

In discussing sensitivity analysis, we are interested in how an optimal solution
varies with the values of a parameter.

Theorem A.9 Let g : Rn × Rs → Rn be partially differentiable with continuous partial
derivatives. Consider solutions of the equationsg(x;χ) = 0, whereχ ∈ Rs is a
parameter. Suppose thatx?? ∈ Rn is a solution, satisfying:

g(x??; 0) = 0.

We callx = x?? the base-case solution andχ = 0 the base-case parameters. Define the
(parameterized) JacobianJ : Rn × Rs→ Rn×n by:

∀x ∈ Rn,∀χ ∈ Rs, J(x;χ) = ∂g
∂x
(x;χ).

Suppose thatJ(x??; 0) is non-singular. Then, there exists a neighborhoodP of χ = 0
and a partially differentiable functionx? : Rs→ Rn with continuous partial derivatives
such that:

• x?(0) = x?? is equal to the base-case solution,
• x? satisfies:

∀χ ∈ P, g(x?(χ);χ) = 0,

and
• the sensitivity ofx? to variation of the parameters satisfies:

∂x?

∂χ
(0) = −[ J(x?(0); 0)]−1K (x?(0); 0),

whereK : Rn × Rs→ Rn×s is defined by:

∀x ∈ Rn, ∀χ ∈ Rs, K (x;χ) = ∂g
∂χ
(x;χ).

Proof See [70, section A.6][72, section 4.4].2

The most straightforward application of the implicit function theorem is in calcu-
lating the sensitivity toχ of the solution of simultaneous equations evaluated at the
base-case. This is considered in Section 7.5.

Since the base-case solutionx?? in Theorem A.9 is equal tox?(0), we will usu-
ally abuse notation somewhat and writex? for both the base-case solution and
also for the function that represents the dependence of the solution onχ . That is,
whether the symbolx? stands for a particular vector value or for a vector func-
tion will depend on context. Since we are usually only interested in the base-case

solutionx? and its sensitivity at the base-case,
∂x?

∂χ
(0), this will not be ambiguous.
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A.7.4 Inverse function theorem

A related result is called the inverse function theorem. It allows us to “invert” a
function. See Exercise A.19 and [72, section 4.4] for details.

Exercises

Types of functions

A.1 In the following,Q ∈ Rn×n is not necessarily symmetric. DefineQ[ = 1
2(Q+ Q†).

(i) Show thatQ[ is symmetric.
(ii) Show that∀x, 1

2x†Qx = 1
2x†Q[x.

(iii) Show that(Q is positive semi-definite)⇔ (Q[ is positive semi-definite).
(iv) Show that(Q is positive definite)⇔ (Q[ is positive definite).

Norms

A.2 In this exercise we consider several norms.

(i) Prove that theL1 norm‖•‖1 satisfies the definition of a norm.
(ii) Prove that infinity norm‖•‖∞ satisfies the definition of a norm.

(iii) Show that onR1 that‖•‖1 = ‖•‖2 = ‖•‖∞.
(iv) Show that onRn each of these three norms is bounded above and below by some

constant multiple of the others. Calculate all six constants relating the norms. (Each
constant depends onn.)

A.3 Use the triangle inequality (and any other properties of norms that you might need)
to prove that for any norm:

‖x + y‖ ≥ ‖x‖ − ‖y‖ .

A.4 Show that the induced matrix norm in Definition A.30 satisfies Definition A.29 of a
matrix norm.

A.5 Consider the matrixA ∈ R2×2 and theL2 norm ‖•‖2. Calculate the value of the
induced matrix norm‖A‖ for:

(i) A =
[

1 0
0 1

]
,

(ii) A =
[

1 0
0 2

]
,

(iii) A =
[

1 1
0 2

]
.
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Limits

A.6 Do the following sequences{x(ν)}∞ν=0 have any accumulation points? For each
accumulation point, specify a convergent sub-sequence and its accumulation point.

(i) ∀ν ∈ Z+, x(ν) =
{

(ν)2, if ν is odd,
1/(ν + 1), if ν is even.

(ii) ∀ν ∈ Z+, x(ν) =





1, if ν is divisible by 4,
1/ν, if ν has remainder 1 after division by 4,
(ν)2, if ν has remainder 2 after division by 4,
−1/ν, if ν has remainder 3 after division by 4,

(iii) ∀ν ∈ Z+, x(ν) =





[
(ν)2

1/ν

]
, if ν is odd,

[
1/(ν + 1)
(ν + 1)2

]
, if ν is even.

A.7 Consider the functionf : R→ R defined by:

∀x ∈ R, f (x) =
{

1, if x = 0,
x, if x 6= 0.

Show thatf is not continuous atx = 0. Use the‖•‖1 norm.

A.8 Show that a norm onRn is a continuous function. (Hint: Notice that‖•‖ : Rn→ R,
so you must define norms onRn and onR. Which norms should they be to make your
work easy?)

A.9 ([72, example 2 of appendix A].) Letf : R2→ R be defined by:

∀x ∈ R2, f (x) =
{

x1x2√
(x1)

2+(x2)
2
, if x 6= 0,

0, if x = 0.

(i) Sketch the function.
(ii) Show that f is partially differentiable at eachx ∈ R2.

(iii) Show that the partial derivatives are not continuous atx? = 0.
(iv) Let 1x = 1 ∈ R2 and define the functionφ : R→ R by:

∀t ∈ R, φ(t) = f (t1x).

Is φ continuous att = 0?
(v) Forφ defined in the previous part, isφ differentiable att = 0?

A.10 In this exercise we consider quadratic functions.

(i) Let Q ∈ Rn×n be symmetric. Show that the Hessian off defined in (A.1) is given
by Q.

(ii) Suppose thatQ ∈ Rn×n is not symmetric. What is the Hessian off defined
in (A.1)?
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A.11 Let f : R→ R+ be continuous and leta,b ∈ R.

(i) Prove that:
∫ b

t=a
f (t) dt ≥ 0.

(ii) Now suppose thatf (t) is strictly positive fora < t < b. Prove that:
∫ b

t=a
f (t) dt > 0.

Sets

A.12 In this exercise we consider open and closed balls.

(i) Prove that a closed ball is a closed set. Make sure that your proof applies the
definitions carefully.

(ii) Prove that an open ball is not a closed set.
(iii) What points would have to be added to the open ball to make it closed? Specify the

smallest set of added points that would make the open ball into a closed set.
(iv) Prove that an open ball is an open set.

A.13 Show that the intersection of two closed sets is closed.

A.14 In this exercise we consider sets defined in terms of functions.

(i) Let g : Rn→ Rm be continuous. Show thatS = {x ∈ Rn|g(x) = 0} is closed.
(ii) Let h : Rn→ Rr be continuous. Show thatS = {x ∈ Rn|h(x) ≤ 0} is closed.

(iii) Let g : Rn → Rm and h : Rn → Rr be continuous. Show thatS = {x ∈
Rn|g(x) = 0, h(x) ≤ 0} is closed.

A.15 Suppose thath : Rn→ Rr is continuous and consider the setsS = {Rn|h(x) ≤ 0},
Ŝ = {x ∈ Rn|h(x) ≤ 0 and, for at least onè, h`(x) = 0}, andS = {x ∈ Rn|h(x) < 0}.

(i) Suppose that each element ofS is a regular point of the constraintsh(x) ≤ 0. (See
Definition 19.1.) Show that the interior ofS is S and that the boundary ofS is Ŝ.

(ii) Suppose thath is a convex function (see Definition 2.16) and thatS 6= ∅. Show
that the interior ofS is S and that the boundary ofS is Ŝ.

(iii) Show by an example that ifh is not continuous then the boundary ofS is not
necessarilŷS.

(iv) Show by an example that ifh is continuous but some elements ofS are not regular
points of the constraintsh(x) ≤ 0 then the interior ofS is not necessarilyS.

(v) Show by an example that ifh is continuous and convex butS = ∅ then the interior
of S is not necessarilyS.



800 Mathematical preliminaries

Properties of matrices

A.16 Let A ∈ Rm×n. Show that the columns ofA are not linearly independent if and
only if the null space ofA contains vectors besides0.

A.17 Do the following have linearly independent columns? What is the column rank of
each matrix?

(i) A =
[

0
0
0

]
.

(ii) A =
[

0 1
1 0

]
.

(iii) A =
[

1 0
0 1
0 0

]
.

(iv) A =
[

1 1 0
0 0 1
0 0 0

]
.

(v) A =
[−1 1

0 0
0 0

]
.

(vi) A =
[

1 1 3
2 2 4

]
.

(vii) A =
[

1 2 6
2 3 10

]
.

(viii) A =
[

0 1
0 2
0 3

]
.

A.18 Let Q ∈ Rn×n andA ∈ Rm×n.

(i) Suppose that there exists5 ∈ R+ such thatQ+5A†A is positive definite. Show
that Q is positive definite on the null spaceN (A) = {1x ∈ Rn|A1x = 0}.

(ii) Suppose thatQ is positive definite on the null spaceN (A) = {1x ∈ Rn|A1x =
0}. Show that there exists5 ∈ R+ such thatQ + 5A†A is positive definite.
(Hint: Prove by contradiction. Suppose that for eachν ∈ Z+ there isx(ν) such

that
∥∥x(ν)

∥∥ = 1 and [x(ν)]
†
(Q + νA†A)x(ν) ≤ 0. Apply Theorem A.7 to find a

convergent sub-sequence of{x(ν)}∞ν=1.)

Special results

A.19 Let h : Rn→ Rn be partially differentiable with continuous partial derivatives and

x?? ∈ Rn. Suppose thath(x??) = 0 and that
∂h
∂x (x

??) is non-singular. Use the implicit

function theorem, Theorem A.9, to show that, in a neighborhood ofχ = 0, there exists an
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inverse functionx? : Rn → Rn to h. In particular, show that there exists a neighborhood
P of χ = 0 and a partially differentiable functionx? : Rn → Rn with continuous partial
derivatives such that:

• x?(0) = x??,
• x? satisfies:

∀χ ∈ P, h(x?(χ)) = χ,
and
• the sensitivity ofx? to variation ofχ satisfies:

∂x?

∂χ
(0) =

[
∂h
∂x (x

??)

]−1
.

(Hint: Defineg : Rn × Rn→ Rn by ∀x ∈ Rn, ∀χ ∈ Rn, g(x;χ) = h(x)− χ .)



Appendix B

Proofs of theorems

B.1 Problems, algorithms, and solutions

Theorem 2.6 We follow the proof of [70, proposition 4, section 6.4].

⇒ Suppose thatf is convex. Letx, x′ ∈ S be given. Then, by definition,

∀t ∈ [0,1], f (x′ + t [x − x′]) ≤ f (x′)+ t [ f (x)− f (x′)].

Re-arranging and dividing through byt for 0< t ≤ 1, we obtain:

∀t ∈ (0,1],
f (x′ + t [x − x′])− f (x′)

t
≤ f (x)− f (x′). (B.1)

To interpret (B.1), consider a line interpolatingf betweenx′ andx as shown in
Figure B.1. This line has slope:

f (x)− f (x′)
‖x − x′‖2

,

and is illustrated with the dashed line in Figure B.1. Now consider a line interpo-
lating f betweenx′ andx′ + t [x − x′]. This line has slope:

f (x′ + t [x − x′])− f (x′)
t ‖x − x′‖2

,

and is illustrated with the dash-dotted line in Figure B.1. Equation (B.1) shows
that the slope of the dash-dotted line is no greater than the slope of the dashed line.
This is true for each value oft in the range 0< t ≤ 1. The situation is illustrated
in Figure B.1.

802
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x′ xx′ + t [x − x′]

f (x)

Fig. B.1. Graphical illus-
tration of inequality (B.1)
in Theorem 2.6. The line
interpolating f betweenx′
and x is shown dashed,
while the line interpolating
f betweenx′ andx′+t [x−
x′] is shown dash-dotted.

Moreover, sincef is partially differentiable with continuous partial derivatives,

∇ f (x′)†(x − x′)

= lim
t→0

f (x′ + t [x − x′])− f (x′)
t

,

by definition of the partial derivative (see Definition A.36),

and of the directional derivative (see Definition A.37),

≤ lim
t→0

[ f (x)− f (x′)], by (B.1), on replacing( f (x′ + t [x − x′])− f (x′))/t

with the valuef (x)− f (x′), which is always greater,

= f (x)− f (x′).

The result is true for arbitraryx, x′ ∈ S so that (2.31) holds.

⇐ Conversely, suppose that (2.31) holds. Letx, x′′ ∈ S and 0 ≤ t ≤ 1 be
arbitrary. To prove thatf is convex, we must show thatf (x + t [x′′ − x]) ≤
f (x) + t [ f (x′′) − f (x)]. Let x′ = x + t [x′′ − x]. Then, equivalently, we must
prove thatf (x′) ≤ f (x)+ t [ f (x′′)− f (x)]. Now notice that:

f (x)+ t [ f (x′′)− f (x)] = [1− t ] f (x)+ t f (x′′),

so that equivalently we must show that:

f (x′) ≤ [1− t ] f (x)+ t f (x′′). (B.2)

By (2.31), sincex, x′ ∈ S,

f (x) ≥ f (x′)+∇ f (x′)†(x − x′). (B.3)
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But by (2.31) applied tox′′ andx′, (that is, replacingx by x′′ in (2.31) and observ-
ing thatx′′, x′ ∈ S),

f (x′′) ≥ f (x′)+∇ f (x′)†(x′′ − x′). (B.4)

Now multiply (B.3) by [1− t ] and multiply (B.4) byt and add the results together
to obtain:

[1− t ] f (x)+ t f (x′′)

≥ [1− t ] f (x′)+ [1− t ]∇ f (x′)†(x − x′)+ t f (x′)+ t∇ f (x′)†(x′′ − x′),

= f (x′)+∇ f (x′)†[(1− t)(x − x′)+ t (x′′ − x′)],

= f (x′)+∇ f (x′)†[x + t (x′′ − x)− x′],

on collecting and re-arranging the terms in the square brackets,

= f (x′)+∇ f (x′)†[0], by definition ofx′,

= f (x′),

which is (B.2). 2

Theorem 2.7 By Theorem 2.6, we must show that (2.31) holds. Letx, x′ ∈ S.
For 0 ≤ t ≤ 1 we have that(x′ + t [x − x′]) ∈ S sinceS is convex. Define
φ : [0,1]→ R by ∀t ∈ [0,1], φ(t) = f (x′ + t [x − x′]). Notice that:

φ(0) = f (x′), (B.5)

φ(1) = f (x). (B.6)

Taking derivatives:

dφ
dt

(t) = ∇ f (x′ + t [x − x′])†(x − x′), by the chain rule [72, section 2.4],

dφ
dt

(0) = ∇ f (x′)†(x − x′), evaluating the previous expression att = 0, (B.7)

d2φ

dt2 (t) = (x − x′)†∇2f (x′ + t [x − x′])(x − x′),

≥ 0, for 0≤ t ≤ 1 since∇2f (x′ + t [x − x′]) is positive semi-definite.

(B.8)
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By (B.5), (B.6), and (B.7), the condition (2.31) is equivalent toφ(1) ≥ φ(0) +
dφ
dt

(0). We have:

φ(1) = φ(0)+
∫ 1

t=0

dφ
dt

(t) dt,

by the fundamental theorem of integral calculus applied toφ,

(see Theorem A.2 in Section A.4.4.1 of Appendix A),

= φ(0)+
∫ 1

t=0

[
dφ
dt

(0)+
∫ t

t ′=0

d2φ

dt2 (t ′)dt′
]

dt,

by the fundamental theorem of integral calculus applied to
dφ
dt

,

(see Theorem A.2 in Section A.4.4.1 of Appendix A),

= φ(0)+ dφ
dt

(0)+
∫ 1

t=0

∫ t

t ′=0

d2φ

dt2 (t ′)dt′ dt, (B.9)

evaluating the integral of the first term in the integrand,

≥ φ(0)+ dφ
dt

(0),

since the integrand is non-negative everywhere by (B.8),

(see Theorem A.3 in Section A.4.4.2 of Appendix A).

This is the result we were trying to prove. A similar analysis applies if∇2f is posi-
tive definite, where we note that continuity and positive definiteness of the Hessian

implies that the integrand
d2φ

dt2 (t ′) in (B.9) is continuous and strictly positive ev-

erywhere. 2

B.2 Algorithms for linear simultaneous equations

Lemma 5.1 First notice that the symmetry ofA is preserved when we re-order the
rows and columns using diagonal pivoting. Therefore, we can assume thatA has
its rows and columns ordered so thatA11 is the first pivot. By definition,

∀` = 2, . . . , n, L`1 = A`1/A11.
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Now consider any entryA(2)`k with `, k ≥ 2. We have:

A(2)`k = A`k − L`1A1k, by definition ofA(2),

= A`k − A`1A1k/A11, by definition ofL`1.

Also, A(2)k` = Ak` − Lk1A1`, by definition ofA(2),

= Ak` − Ak1A1`/A11, by definition ofLk1,

= A`k − A`1A1k/A11, by symmetry ofA,

= A(2)`k .

2

Lemma 5.2 Again, we can assume thatA( j )
j j was used as the pivot. Then,

∀` > j, L`j = A( j )
`j /A( j )

j j ,

by definition. Consider any entryA( j+1)
`k with `, k ≥ j + 1. We have

A( j+1)
`k = A( j )

`k − L`j A( j )
jk , by definition ofA( j+1),

= A( j )
`k − A( j )

`j A( j )
jk /A( j )

j j , by definition ofL`j .

Also, A( j+1)
k` = A( j )

k` − Lk j A
( j )
j ` , by definition ofA( j+1),

= A( j )
k` − A( j )

k j A( j )
j ` /A( j )

j j , by definition ofLk j ,

= A( j )
`k − A( j )

`j A( j )
jk /A( j )

j j , by symmetry ofA( j ),

= A( j+1)
`k .

2

Theorem 5.5 We divide the proof into three parts.

A is invertible Suppose thatA ∈ Rn×n is singular. Then, by Theorem A.5 in
Section A.6.1.2 of Appendix A, there existsx 6= 0 such thatAx = 0. But then
x†Ax = x†0= 0 and soA is not positive definite. This is a contradiction and soA
is, in fact, non-singular. (Positive definiteness is a “stronger” condition than being
invertible.)

A is factorizable asL DL† We now claim that we can use the standard pivotA(`)``
at each stage of the factorization algorithm to factorize symmetric positive definite
A into LU . For suppose not. That is, suppose that the factorization failed at, say,
stagè . By this we mean that factorization using the standard pivot was successful
for stages 1, . . . , (`− 1), but we found that at stagè, A(`)`` = 0. (If we find a zero
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pivot at the first stage, theǹ= 1 and we defineA(1) = A. In this particular case,
A(`)`` = A(1)11 = A11 = 0.)

Let L ′ be the product of the inverses of the matricesM (1), . . . ,M (`−1) defined in
the factorization algorithm in Section 5.3.2. (If` = 1, then defineL ′ = I .) Notice
thatL ′ is lower triangular with ones on its diagonal. We haveA = L ′A(`).

Consider the top left-hand̀× ` submatrices ofA, L ′, and A(`) and write Â,
L̂ ′, and Â(`), respectively, for these threè× ` submatrices. By construction, the
matrix L̂ ′ is lower triangular, whileÂ(`) is upper triangular. Let us use the symbol
• to stand for blocks of a matrix that have unknown and possibly non-zero entries.
Then we can write:

A =
[

Â •
• •

]
, by definition of Â,

= L ′A(`), by construction,

=
[

L̂ ′ 0
• •

] [
Â(`) •
• •

]
,

by definition ofL ′, L̂ ′, andÂ(`) and sinceL ′ is lower triangular,

=
[

L̂ ′ Â(`) •
• •

]
, on multiplying.

Therefore,Â = L̂ ′ Â(`). For example, if we encounter a zero pivot at the first stage,
then Â = [ A11] = [0], L̂ ′ = [1], Â(1) = [0], and [0] = [1] [0]. Since Â(`) is
upper triangular, if we letÛ ′ = Â(`) then theLU factorization ofÂ is given by
Â = L̂ ′Û ′.

Furthermore,Â is symmetric and has been factorized intoL̂ ′Û ′ using diagonal
pivots. Recall that from Corollary 5.3 and the discussion in Section 5.4.4 that if we
defineD̂ to be diagonal with diagonal entries equal to the diagonal ofÛ ′ = Â(`),

then we can factor̂A as L̂ ′ D̂[ L̂ ′]
†
, whereL̂ ′ is lower triangular with ones on the

diagonal andD̂ is diagonal. SinceA(`)`` = 0, we have thatD`` = 0. By Lemma 5.4
applied toÂ, Â is not positive definite, since the entryD`` is not positive.

In summary, if the factorization fails at stage` then Â, the top left-hand̀ × `
sub-matrix ofA, is not positive definite.

But let x̂ ∈ R` be given and definex =
[

x̂
0

]
∈ Rn. We have:

x̂ 6= 0 ⇒ x =
[

x̂
0

]
6= 0,

⇒ x̂† Âx̂ =
[

x̂
0

]†

A

[
x̂
0

]
= x†Ax > 0,

sinceA is positive definite by hypothesis.
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That is,x̂ 6= 0⇒ x̂† Âx̂ > 0. But this is true for anŷx 6= 0 and soÂ is positive
definite. This contradicts the earlier result, so that in fact we could not have en-
countered a zero pivot at stage`. Therefore, we can successfully use the algorithm
to factorizeA asLU . But sinceA is symmetric, by definingD to be diagonal with
diagonal entries equal to the diagonal ofU , we can factorizeA asA = L DL†.

In conclusion,A can be factorized intoL DL† with L lower triangular having
ones on its diagonal andD diagonal. By Lemma 5.4, sinceA is positive definite,
D has strictly positive diagonal entries.

A−1 is positive definite As we did in the proof of Lemma 5.4, letD
1
2 be diagonal

with diagonal entries equal to the square roots of the corresponding diagonal entries
of D. Then:

A−1 = [L DL†]
−1
, by assumption onA,

= [L†]
−1

D−1L−1, recalling from Section 5.3.2 thatL is invertible,

= [L−1]
†
D−1L−1, since [L−1]† = [L†]

−1
, (see Exercise 5.18),

= [L−1]
†
[
D

1
2

]−1[
D

1
2

]−1
L−1, by definition ofD

1
2 .

Let x 6= 0 be given. Note that
[
D

1
2

]−1
L−1x 6= 0 (for elsex = L D

1
2 0 = 0.) But

this means thatx†A−1x =
∥∥∥∥
[
D

1
2

]−1
L−1x

∥∥∥∥
2

2

> 0, by Property (ii) of norms, so that

A−1 is positive definite.2

Lemma 5.6 To calculateA( j+1), usingA( j )
j j as pivot, we apply (5.11) to calculate:

A( j+1)
`k = A( j )

`k − L`j A( j )
jk , j < ` ≤ n, j < k ≤ n.

The number of fill-ins is equal to the number of times thatA( j )
`k = 0, yetL`j A( j )

jk 6=
0, so thatA( j+1)

`k 6= 0. DefineI ( j ) ∈ Rn×n by:

∀`, k, I ( j )
`k =

{
0, if A( j )

`k = 0,
1, if A( j )

`k 6= 0.

Then a fill-in is created at thèk-th entry if:

(i) A( j )
`k = 0; that is,I ( j )

`k = 0,
(ii) L`j = A( j )

`j /A( j )
j j 6= 0; that is,A( j )

`j 6= 0 andI ( j )
`j = 1, and

(iii) A( j )
jk 6= 0; that is,I ( j )

jk = 1.

Therefore, a fill-in occurs at thèk-th entry if and only if(1− I ( j )
`k )I

( j )
`j I ( j )

jk = 1. If

a fill-in does not occur, then(1− I ( j )
`k )I

( j )
`j I ( j )

jk = 0.
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We definedN( j ) to be the number of fill-ins created at stagej due to pivoting
on A( j )

j j at stagej . We can calculateN( j ) by summing(1− I ( j )
`k )I

( j )
`j I ( j )

jk over all the
`k-th entries that are in rowsj + 1 ton and columnsj + 1 ton. That is:

N( j ) =
∑

j < ` ≤ n
j < k ≤ n

(1− I ( j )
`k )I

( j )
`j I ( j )

jk . (B.10)

SinceA is sparse and we are trying to minimize fill-ins, it is reasonable to assume
that A( j ) is also sparse. That is, it is rare forA( j )

`k to be non-zero and we can
approximate the sum in (B.10) by neglecting the term(1− I ( j )

`k ), since it is usually
equal to one. We calculate an upper bound,N( j ), on the number of fill-insN( j )
by neglecting the factor(1− I ( j )

`k ). That is:

N( j ) ≤ N( j ),

=
∑

j < ` ≤ n
j < k ≤ n

I ( j )
`j I ( j )

jk ,

=

 ∑

j<`≤n

I ( j )
`j




 ∑

j<k≤n

I ( j )
jk


 , separating out the sums,

=

 ∑

j<k≤n

I ( j )
jk




2

, becauseA( j ) is symmetric.

The last expression is the square of:

[(the number of non-zero entries in thej -th row of A( j )) minus 1].

(Recall that the first( j − 1) entries in this row are zero because of earlier stages in
the factorization.)2

B.3 Algorithms for non-linear simultaneous equations

Theorem 7.2 We divide the proof into four parts:

(i) proving that{x(ν)}∞ν=0 is Cauchy and has a limit that is contained inS;
(ii) proving that the limit is a fixed point of8;

(iii) proving that the fixed point is unique; and
(iv) proving that the sequence converges to the fixed point according to (7.21).
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{x(ν)}∞ν=0 is Cauchy and has a limit that is contained inS We prove that the se-
quence of iterates is a Cauchy sequence. By Lemma 7.1, this will establish that the
sequence of iterates converges to some pointx?, say. To prove that the sequence is
Cauchy requires four main steps, which successively bound the difference between
various pairs of iterates.

Step 1: We first bound the norm of the difference between two successive iterates:

∥∥x(m+1) − x(m)
∥∥

= ∥∥8(x(m))−8(x(m−1))
∥∥ ,

by (7.20), the definitions ofx(m+1) andx(m),

≤ L
∥∥x(m) − x(m−1)

∥∥ ,
since8 is a contraction mapping with Lipschitz constantL,

≤ (L)2
∥∥x(m−1) − x(m−2)

∥∥ , repeating the same argument,

...
...

≤ (L)m
∥∥x(1) − x(0)

∥∥ , (B.11)

repeating the argument a further(m− 2) times.

Step 2: We use (B.11) to bound the norm of the difference between theν-th and
0-th iterate:

∥∥x(ν) − x(0)
∥∥

= ∥∥(x(ν) − x(ν−1))+ (x(ν−1) − x(ν−2))+ · · · + (x(1) − x(0))
∥∥ ,

adding and subtracting terms,

≤ ∥∥x(ν) − x(ν−1)
∥∥+ ∥∥x(ν−1) − x(ν−2)

∥∥+ · · · + ∥∥x(1) − x(0)
∥∥ ,

by the triangle inequality (Property (iii) in Definition A.28

of norms in Section A.3.1 of Appendix A) applied repeatedly,

≤
ν−1∑

m=0

(L)m
∥∥x(1) − x(0)

∥∥ , using (B.11) form= 0, . . . , ν − 1,

= 1− (L)ν
1− L

∥∥x(1) − x(0)
∥∥ ,

using the formula for the sum of a geometric progression,

≤ 1

1− L

∥∥x(1) − x(0)
∥∥ , (B.12)

since 0≤ L < 1.

Step 3: We use (B.12) to bound the norm of the difference between an arbitrary
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pair of iteratesx(ν) andx(ν
′). Let us first suppose thatν ≤ ν ′. Then:

∥∥∥x(ν
′) − x(ν)

∥∥∥
=

∥∥∥8(x(ν′−1))−8(x(ν−1))

∥∥∥ , by (7.20),

≤ L
∥∥∥x(ν

′−1) − x(ν−1)
∥∥∥ , since8 is a contraction mapping,

...
...

≤ (L)ν
∥∥∥x(ν

′−ν) − x(0)
∥∥∥ ,

applying the same argument a further(ν − 1) times,

≤ (L)ν

1− L

∥∥x(1) − x(0)
∥∥ , by (B.12) for the(ν ′ − ν)-th iterate.

Similarly, if ν ′ ≤ ν then:

∥∥∥x(ν
′) − x(ν)

∥∥∥ ≤ (L)ν
′

1− L

∥∥x(1) − x(0)
∥∥ .

Combining the two results, we obtain:

∥∥∥x(ν
′) − x(ν)

∥∥∥ ≤ (L)
min{ν,ν′}

1− L

∥∥x(1) − x(0)
∥∥ . (B.13)

Step 4: We use (B.13) to prove that{x(ν)}∞ν=0 is a Cauchy sequence. For, letε > 0
be given. We claim that:

N = ln
[
ε(1− L)/

∥∥x(1) − x(0)
∥∥]

ln(L)

will suffice in the definition of a Cauchy sequence. By definition ofN, we
have that (on re-arranging and taking the exponential of both sides):

(L)N

1− L

∥∥x(1) − x(0)
∥∥ = ε,

so that forν, ν ′ ≥ N we have that(L)min{ν,ν′} ∥∥x(1) − x(0)
∥∥ /(1− L) ≤ ε.

Therefore, by (B.13):

∀ν, ν ′ ≥ N,
∥∥∥x(ν

′) − x(ν)
∥∥∥ ≤ ε,

and the sequence is Cauchy. By Lemma 7.1,{x(ν)}∞ν=0 has a limit,x?, say.
But S is closed andx(ν) ∈ S,∀ν, sox? ∈ S.
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x? is a fixed point of8 Notice that:
∥∥8(x?)− x(ν)

∥∥ = ∥∥8(x?)−8(x(ν−1))
∥∥ , by (7.20),

≤ L
∥∥x? − x(ν−1)

∥∥ , since8 is Lipschitz. (B.14)

Taking limits of the left- and right-hand sides of (B.14), and recalling that the
norm is a continuous function, (see Exercise A.8,) we obtain that‖8(x?)− x?‖ ≤
L ‖x? − x?‖ = 0, so that, by Property (ii) of norms,8(x?) = x? andx? is a fixed
point of8.

Uniqueness of fixed pointNow suppose there are two fixed pointsx? 6= x?? of 8
in S. Then,
∥∥x? − x??

∥∥ = ∥∥8(x?)−8(x??)∥∥ , sincex? andx?? are fixed points of8,

≤ L
∥∥x? − x??

∥∥ , since8 is Lipschitz,

<
∥∥x? − x??

∥∥ , sinceL < 1 becausex? 6= x?? by supposition.

But this is a contradiction. So, there is exactly one fixed point,x?, say.

Rate of convergenceNow note that:
∥∥x(ν) − x?

∥∥
= ∥∥8(x(ν−1))− x?

∥∥ ,by (7.20),

= ∥∥8(x(ν−1))−8(x?)∥∥ , sincex? is a fixed point of8,

≤ L
∥∥x(ν−1) − x?

∥∥ ,by definition of contraction mapping,

≤ L2
∥∥x(ν−2) − x?

∥∥ , repeating the same argument in the last three lines,
...

≤ Lν
∥∥x(0) − x?

∥∥ , repeating the argument a further(ν − 2) times.

So asν → ∞, Lν → 0, andx(ν) → x?. That is, the iterative method (7.20)
converges to the unique fixed point of8 in S. Furthermore, the error improves by
a factorL at each iteration, satisfying the bound (7.21).2

Theorem 7.3 We reproduce the proof from [58, section 5.5] and divide it into four
parts:

(i) we first prove that the iterates stay inS = {x ∈ Rn
∣∣∥∥x − x(0)

∥∥ ≤ ρ−
}
;

(ii) we then go on to prove that the chord method iteration defines a contraction
mapping onS;

(iii) we then prove that the sequence of iterates converges to a solutionx? ∈ Rn

of (7.1) that satisfies the estimate (7.22); and
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(iv) finally, we prove thatx? is the only solution in the open ball of radiusρ+
aboutx(0).

The iterates stay inS Consider the map:

8(x) = x − [ J(x(0))]
−1

g(x),

which specifies the chord method (7.8)–(7.9) in the form (7.20). We show that8

mapsS to itself. This requires us to estimate the value of [J(x(0))]
−1

g(x) in terms
of known quantities. We know properties of [J(x(0))]

−1
g(x(0)) and J, so we will

express [J(x(0))]
−1

g(x) in terms of these. This requires five main steps.

Step 1: First:

[ J(x(0))]
−1

g(x) = [ J(x(0))]
−1

g(x(0))+ [ J(x(0))]
−1× (g(x)− g(x(0))),

(B.15)

on adding and subtracting [J(x(0))]
−1

g(x(0)).

Step 2: We evaluate(g(x) − g(x(0))), the factor in the second term on the right-
hand side of (B.15). Defineγ : [0,1]→ Rn by:

∀t ∈ [0,1], γ (t) = g(x(0) + t (x − x(0))).

Then γ (0) = g(x(0)), γ (1) = g(x), and, by the chain rule [72, sec-
tion 2.4]),

dγ
dt

(t) = J(x(0) + t (x − x(0)))× (x − x(0)).

Therefore:

g(x)− g(x(0)) = γ (1)− γ (0),

=
∫ t=1

t=0

dγ
dt

(t) dt,

by the fundamental theorem of integral calculus

(Theorem A.2 in Section A.4.4.1 of Appendix A),

=
∫ t=1

t=0
[ J(x(0) + t (x − x(0)))] × (x − x(0)) dt. (B.16)



814 Proofs of theorems

Step 3: Substituting (B.16) into (B.15), we obtain:

[ J(x(0))]
−1

g(x)

= [ J(x(0))]
−1

g(x(0))

+ [ J(x(0))]
−1
∫ t=1

t=0
[ J(x(0) + t (x − x(0)))] × (x − x(0)) dt,

= [ J(x(0))]
−1

g(x(0))+ (x − x(0))− [ J(x(0))]
−1

J(x(0))× (x − x(0))

+ [ J(x(0))]
−1
∫ t=1

t=0
[ J(x(0) + t (x − x(0)))] × (x − x(0)) dt,

adding and subtracting(x − x(0)) = [ J(x(0))]
−1

J(x(0))× (x − x(0)),

= [ J(x(0))]
−1

g(x(0))+ (x − x(0))+ [ J(x(0))]
−1×[∫ t=1

t=0
[ J(x(0) + t (x − x(0)))] × (x − x(0)) dt − J(x(0))× (x − x(0))

]
,

on re-arranging,

= [ J(x(0))]
−1

g(x(0))+ (x − x(0))

+ [ J(x(0))]
−1
∫ t=1

t=0

[
J(x(0) + t (x − x(0)))− J(x(0))

]× (x − x(0))dt,

(B.17)

where the last equality holds since the integral of a constant between 0 and
1 is equal to the constant.

Step 4: We have:

8(x)− x(0)

= x − [ J(x(0))]
−1

g(x)− x(0), by definition,

= −[ J(x(0))]
−1

g(x(0))

− [ J(x(0))]
−1
∫ t=1

t=0

[
J(x(0) + t (x − x(0)))− J(x(0))

]× (x − x(0)) dt,

from (B.17).

Taking norms and using the triangle inequality and Lemma A.1 in Sec-
tion A.3.2 of Appendix A repeatedly, we obtain:

∥∥8(x)− x(0)
∥∥

≤
∥∥∥[ J(x(0))]

−1
g(x(0))

∥∥∥+
∥∥∥[ J(x(0))]

−1∥∥∥×
∫ t=1

t=0

∥∥J(x(0) + t (x − x(0)))− J(x(0))
∥∥ ∥∥x − x(0)

∥∥ dt,
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≤ b+ a
∫ t=1

t=0
ct
∥∥x − x(0)

∥∥2
dt, for x ∈ S,

by the definitions ofa,b, andc, since:

• J is Lipschitz with constantc onS;

• x(0) + t (x − x(0)) ∈ S; and

• (x(0) + t (x − x(0)))− x(0) = t (x − x(0)),

≤ b+ acρ2
−/2, (B.18)

evaluating the integral and noting that
∥∥x − x(0)

∥∥ ≤ ρ−.
Step 5: By definition ofρ−:

ρ2
− =

1− 2
√

1− 2abc+ (1− 2abc)

(ac)2
,

= 2(1−√1− 2abc)− 2abc

(ac)2
,

= 2ρ− − 2b

ac
,

sob+ acρ2
−/2 = ρ−. Therefore, by (B.18),

∥∥8(x)− x(0)
∥∥ ≤ ρ− and so

8 mapsS to itself.

8 is a contraction mapping We now show that8 is a contraction mapping. This
requires three main steps.

Step 1: First:

∂8

∂x
(x) = I − [ J(x(0))]

−1
J(x), by definition ofJ,

= [ J(x(0))]
−1× (J(x(0))− J(x)).

Therefore, forx ∈ S:
∥∥∥∥
∂8

∂x
(x)

∥∥∥∥ ≤
∥∥∥[ J(x(0))]

−1∥∥∥
∥∥J(x(0))− J(x)

∥∥ , by Lemma A.1,

≤ ac
∥∥x(0) − x

∥∥ , by assumption,

≤ acρ−, since
∥∥x − x(0)

∥∥ ≤ ρ−. (B.19)

Step 2: Let x′, x′′ ∈ S and defineφ : R → Rn by φ(t) = 8(x′′ + t (x′ − x′′)).
Then by the chain rule [72, section 2.4]:

dφ
dt

(t) = ∂8

∂x
(x′′ + t (x′ − x′′))× (x′ − x′′),
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and so:

8(x′)−8(x′′)
= φ(1)− φ(0),
=

∫ t=1

t=0

dφ
dt

(t) dt,

by the fundamental theorem of integral calculus,

(see Theorem A.2 in Section A.4.4.1 of Appendix A),

=
∫ t=1

t=0

[
∂8

∂x
(x′′ + t (x′ − x′′))

]
× (x′ − x′′) dt.

Therefore, on taking norms and using Lemma A.1:

∥∥8(x′)−8(x′′)∥∥ ≤
∫ t=1

t=0

∥∥∥∥
∂8

∂x
(x′′ + t (x′ − x′′))

∥∥∥∥
∥∥x′ − x′′

∥∥ dt,

≤
∫ t=1

t=0
acρ−

∥∥x′ − x′′
∥∥ dt,

by (B.19) sincex′′ + t (x′ − x′′) ∈ S,
= acρ−

∥∥x′ − x′′
∥∥ .

Step 3: By definition, acρ− = 1− √1− 2abc < 1, so8 is a contraction with
Lipschitz constantL = acρ− < 1. Therefore, by Theorem 7.2, there
is a unique fixed pointx? of 8 in S and, moreover, the chord iteration
converges tox?.

The fixed point x? satisfies (7.1) and (7.22)Notice that:

(8(x?) = x?)⇒
(
[ J(x(0))]

−1
g(x?) = 0

)
⇒ (g(x?) = 0),

so thatx? is a solution of (7.1). Furthermore, sincex? ∈ S, we have that:
∥∥x(0) − x?

∥∥ ≤ ρ−.
Substituting this and the Lipschitz constantL = acρ− into (7.21) in the statement
of Theorem 7.2, we obtain the error estimate (7.22).

x? is the only solution within a distanceρ+ of x(0) We claimed that there is only
one fixed point of8 (and solution of (7.1)) in the set

{
x ∈ Rn

∣∣∥∥x − x(0)
∥∥ < ρ+

}
.

Since we have already proven that there is exactly one fixed point in its subset{
x ∈ Rn

∣∣∥∥x − x(0)
∥∥ ≤ ρ−

}
, we must show that there are no fixed points of8 in{

x ∈ Rn
∣∣ρ− <

∥∥x − x(0)
∥∥ < ρ+

}
. That is, we must show that:

(
ρ− <

∥∥x − x(0)
∥∥ < ρ+

)⇒ (8(x) 6= x),
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or equivalently that:
(
ρ− <

∥∥x − x(0)
∥∥ < ρ+

)⇒ ([ J(x(0))]
−1

g(x) 6= 0).

So, let us suppose that
(
ρ− <

∥∥x − x(0)
∥∥ < ρ+

)
. We prove that this implies that

[ J(x(0))]
−1

g(x) 6= 0. There are two main steps.

Step 1: From (B.17):

[ J(x(0))]
−1

g(x)

= (x − x(0))+ [ J(x(0))]
−1

g(x(0))

+ [ J(x(0))]
−1
∫ t=1

t=0

[
J(x(0) + t (x − x(0)))− J(x(0))]

]× (x − x(0)) dt.

Therefore, by the triangle inequality (see Exercise A.3) and Lemma A.1:
∥∥∥[ J(x(0))]

−1
g(x)

∥∥∥
≥ ∥∥x − x(0)

∥∥−
∥∥∥[ J(x(0))]

−1
g(x(0))

∥∥∥

−
∥∥∥[ J(x(0))]

−1∥∥∥×
∫ t=1

t=0

∥∥J(x(0) + t (x − x(0)))− J(x(0))
∥∥ ∥∥x − x(0)

∥∥dt,

≥ ∥∥x − x(0)
∥∥− b− a

∫ t=1

t=0

∥∥J(x(0) + t (x − x(0)))− J(x(0))
∥∥ ∥∥x − x(0)

∥∥ dt,

by assumption,

≥ ∥∥x − x(0)
∥∥− b− a

∫ t=1

t=0
ct
∥∥x − x(0)

∥∥2
dt, since:

• J is Lipschitz with constantc in the ball of radiusρ ≥ ρ+ aboutx(0);

• x(0) + t (x − x(0)) is contained in this ball for 0≤ t ≤ 1; and

• (x(0) + t (x − x(0)))− x(0) = t (x − x(0)),

= ∥∥x − x(0)
∥∥− b− ac

∥∥x − x(0)
∥∥2
/2, on integrating. (B.20)

Step 2: We claim that the right-hand side of (B.20) is greater than zero for:

ρ− <
∥∥x − x(0)

∥∥ < ρ+.

Consider the quadratic function:

ρ − b− ac(ρ)2/2. (B.21)

It has zerosρ− = (1−
√

1− 2abc)/(ac) and(1+√1− 2abc)/(ac). Fur-
thermore, the coefficient of(ρ)2 in (B.21) is negative, so (B.21) is positive
for ρ in the rangeρ− < ρ < (1+√1− 2abc)/(ac).
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Now let ρ = ∥∥x − x(0)
∥∥. By assumption,ρ− <

∥∥x − x(0)
∥∥ < ρ+,

but ρ+ ≤ (1+ √1− 2abc)/(ac) by definition, so (B.21) is positive for
ρ = ∥∥x − x(0)

∥∥ in the rangeρ− < ρ < ρ+. That is:
∥∥x − x(0)

∥∥− b− ac
∥∥x − x(0)

∥∥2
/2> 0.

But, by (B.20), this means that:
∥∥∥[ J(x(0))]

−1
g(x)

∥∥∥ ≥
∥∥x − x(0)

∥∥− b− ac
∥∥x − x(0)

∥∥2
/2> 0.

Therefore, there are no fixed points of8 in:
{
x ∈ Rn

∣∣ρ− <
∥∥x − x(0)

∥∥ < ρ+
}
.

2

B.4 Algorithms for linear equality-constrained minimization

Theorem 13.1 First notice that forx? to be optimal for the problem it must be
feasible, so thatAx? = b.

Define the functionτ : Rn′ → {x ∈ Rn|Ax = b} by:

∀ξ ∈ Rn′, τ (ξ) = x? + Zξ,

which is onto{x ∈ Rn|Ax = b} by definition ofZ. (See Exercise 13.1, Part (ii).)
Consider the functionφ : Rn′ → R defined by:

∀ξ ∈ Rn′, φ(ξ) = f (τ (ξ)).

The functionφ is partially differentiable with continuous partial derivatives since
it is the composition off andτ , which are both partially differentiable with con-
tinuous partial derivatives. (See Exercise 13.1, Part (iii).)

By hypothesis,x? ∈ argminx∈Rn{ f (x)|Ax = b}. Therefore, by Theorem 3.5,
there existsξ ? ∈ argminξ∈Rn′ φ(ξ) such thatx? = τ(ξ ?).

By Theorem 10.3 applied to the unconstrained problem minξ∈Rn′ φ(ξ), we have
that∇φ(ξ ?) = 0. But,φ(•) = f (τ (•)), so:

∂φ

∂ξ
(ξ ?) = ∂ f

∂x
(τ (ξ ?))× ∂τ

∂ξ
(ξ ?), by the chain rule [72, section 2.4],

= ∂ f
∂x

(x?)Z, by definition ofτ and by Exercise 13.1, Part (iii),
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so that∇φ(ξ ?) = Z†∇ f (x?). That is,Z†∇ f (x?) = 0. 2

B.5 Algorithms for linear inequality-constrained minimization

Theorem 17.1 ([84, section 14.4].) Consider theequality-constrained problem:

min
x∈Rn
{ f (x)|Ax = b,C`x = d`,∀` ∈ A(x?)}. (B.22)

Problem (B.22) includes all the constraints of Problem (17.1) that were satisfied
with equality byx?. The active inequality constraints from Problem (17.1) have
been included as equality constraints in Problem (B.22).

We are going to apply our earlier results forequality-constrained problems to
Problem (B.22) to prove the theorem. We divide the proof into three parts:

(i) showing thatx? is a local minimizer of Problem (B.22),
(ii) using the necessary conditions of Problem (B.22) to defineλ? andµ? that

satisfy the first four lines of (17.2), and
(iii) proving thatµ? ≥ 0.

x? is a local minimizer of Problem (B.22) We prove this by contradiction. Sup-
pose thatx? is not a local minimum of Problem (B.22). We consider the implica-
tions of this supposition.

For any` 6∈ A(x?) we have thatC`x? < d`. By continuity of the continuous
functionCx, let ε > 0 be small enough such that:

∀` 6∈ A(x?),∀x such that
∥∥x? − x

∥∥ ≤ ε,C`x < d`. (B.23)

That is, the inequality constraints that are not active atx? are also not active at
pointsx that are nearby tox?.

Let ε > 0 be given. By hypothesis,x? is not a local minimum of Problem (B.22).
Therefore, by (2.27), there existsxε such that:

∥∥x? − xε
∥∥ ≤ min{ε, ε},
≤ ε,

f (xε) < f (x?),

Axε = b,

∀` ∈ A(x?),C`x
ε = d`.

But these, together with (B.23) mean that there is a pointxε that:
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• is within ε of x?,
• is feasible for Problem (17.1), and
• has a smaller value of the objective.

Furthermore, such a pointxε exists for anyε > 0. Therefore,x? is not a local min-
imum of Problem (17.1). This is a contradiction, sox? is in fact a local minimizer
of Problem (B.22).

Implications of the necessary conditions of Problem (B.22)Consider Theo-
rem 13.2 applied to Problem (B.22). The objectivef is partially differentiable
with continuous partial derivatives andx? is a local minimizer of Problem (B.22).
Therefore, by Theorem 13.2:

∃λ? ∈ Rm,∀` ∈ A(x?), ∃µ?` ∈ R such that∇ f (x?)+ A†λ? +
∑

`∈A(x?)
[C`]

†µ?` = 0.

(B.24)
We now consider constraints̀∈ A(x?) and constraints̀ 6∈ A(x?) separately.

By definition,∀` ∈ A(x?), C`x? = d`, so that:

∀` ∈ A(x?), µ?`(C`x
? − d`) = 0. (B.25)

Defineµ?` = 0,∀` 6∈ A(x?). Then, trivially,∀` 6∈ A(x?), µ?`(C`x? − d`) = 0 and,
combining with (B.25), we obtain:

∀` = 1, . . . , r, µ?`(C`x
? − d`) = 0,

which is the second line of (17.2). Moreover,∀` 6∈ A(x?), [C`]†µ?` = 0 so that:

C†µ? =
∑

`∈A(x?)
[C`]

†µ?` +
∑

6̀∈A(x?)
[C`]

†µ?`,

=
∑

`∈A(x?)
[C`]

†µ?`.

Therefore, combining with (B.24), we obtain:

∃λ? ∈ Rm, ∃µ? ∈ Rr , such that∇ f (x?)+ A†λ? + C†µ? = 0, (B.26)

which is the first line of (17.2).

Non-negativity of µ? By definition,∀` 6∈ A(x?), µ?` = 0 ≥ 0. We are left with
proving thatµ?` ≥ 0,∀` ∈ A(x?). Suppose that this is not true; that is, suppose
thatµ?`′ < 0 for somè ′ ∈ A(x?). We construct a step direction1x and an upper
limit on the step size,α > 0, such thatx? + α1x is feasible for 0≤ α ≤ α and f
decreases in the direction of1x away fromx?.

Consider the matrix̂A consisting of all the rows ofA together with the rowsC`

of C for thosè ∈ A(x?). That is, the rows of̂A consist of:
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• them rows of A, and
• those rows ofC corresponding to the active constraints.

We assume that̂A has linearly independent rows. (Otherwise, consider a maximal
subset of the rows of̂A that are linearly independent and that includes the row
corresponding to constraint`′.) Using the analysis in Section 5.8.1.2 we can solve
the equationÂ1x = −I `′ for 1x, whereI `′ is a vector that has zeros everywhere
except in the position corresponding to inequality constraint`′. We are going to
show thatx? + α1x is feasible for Problem (17.1) forα sufficiently small and
positive. To do this, we will, in order, consider feasibility with respect to:

• the equality constraints,
• the inequality constraints that are active atx?, except for constraint̀′,
• constraint̀ ′, and
• the constraints that are inactive atx?.

We have that:

∀α ∈ R, A(x? + α1x) = Ax? + αA1x,

= b+ α0,

by assumption onx? and construction of1x,

= b,

∀α ∈ R,∀` ∈ A(x?) \ {`′},
C`(x

? + α1x) = C`x
? + αC`1x,

= d` + α0,

by assumption onx? and construction of1x,

= d`,

≤ d`,

∀α ≥ 0,C`′(x
? + α1x) = C`′x

? + αC`′1x,

= d`′ + αC`′1x,

= d`′ + α(−1), by construction of1x,

< d`′ .

By continuity,∃α > 0 such that:

∀` 6∈ A(x?),C`(x
? + α1x) = C`x

? + αC`1x,

< d` + αC`1x, since` 6∈ A(x?),
≤ d`, for 0≤ α ≤ α.

That is, movement in the direction1x is feasible for step-sizes 0≤ α ≤ α. More-
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over,

∇ f (x?)†1x = −[λ?]†A1x − [µ?]†C1x, by (B.26),

= −µ?`′C`′1x, by construction of1x,

= −µ?`′(−1), by construction of1x,

< 0, sinceµ?`′ < 0 by assumption.

But this means thatf decreases in the direction1x from x? and there are feasible
steps in this direction. This contradicts the local optimality ofx?. Therefore, no
such`′ exists and soµ ≥ 0. 2

Theorem 17.3 By Item (iv), x? is feasible. Consider any other feasible pointx′ ∈
Rn. That is, considerx′ such that:

Ax′ = b,Cx′ ≤ d.

We haveAx′ = Ax? = b, so A(x′ − x?) = 0 and:

[λ?]†A(x′ − x?) = 0. (B.27)

We now consider constraints̀∈ A(x?) and constraints̀ 6∈ A(x?) separately.
For` 6∈ A(x?), C`x? < d` and Item (iii) implies thatµ?` = 0. Therefore,

∀` 6∈ A(x?), µ?`C`(x
′ − x?) = 0. (B.28)

Also, sinceC`x′ ≤ d` for all ` and sinceC`x? = d` for ` ∈ A(x?), we have:

∀` ∈ A(x?),C`(x
′ − x?) = C`x

′ − d`,

≤ d` − d`,

= 0.

Therefore, sinceµ?` ≥ 0 for ` ∈ A(x?), we have:

∀` ∈ A(x?), µ?`C`(x
′ − x?) ≤ 0. (B.29)
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We have:

f (x′) ≥ f (x?)+∇ f (x?)†(x′ − x?), by Theorem 2.6, noting that:

f is partially differentiable with continuous partial derivatives;
by Item (i) of the hypothesis,

f is convex on the convex set{x ∈ Rn|Ax = b,Cx ≤ d}; and

by Item (iv) of the hypothesis and construction,

x′, x? ∈ {x ∈ Rn|Ax = b,Cx ≤ d},
= f (x?)− [ A†λ? + C†µ?]

†
(x′ − x?),

by Item (ii) of the hypothesis,

= f (x?)− [λ?]†A(x′ − x?)− [µ?]†C(x′ − x?),

= f (x?)− [µ?]†C(x?)(x′ − x?), by (B.27),

= f (x?)−
∑

`∈A(x?)
µ?`C`(x

′ − x?)−
∑

6̀∈A(x?)
µ?`C`(x

′ − x?),

= f (x?)−
∑

`∈A(x?)
µ?`C`(x

′ − x?), by (B.28),

≥ f (x?), by (B.29).

Thereforex? is a global minimizer off on {x ∈ Rn|Ax = b,Cx ≤ d}. 2

B.6 Algorithms for non-linear inequality-constrained minimization

Theorem 19.4 By Item (v), x? is feasible. Consider any other feasible pointx′ ∈
Rn. That is, considerx′ such that:

Ax′ = b, h(x′) ≤ 0.

We haveAx′ = Ax? = b, so A(x′ − x?) = 0 and:

[λ?]†A(x′ − x?) = 0. (B.30)

We now consider constraints̀∈ A(x?) and constraints̀ 6∈ A(x?) separately.
For` 6∈ A(x?), h(x?) < 0 and Item (iv) implies thatµ?` = 0. Therefore,

∀` 6∈ A(x?), µ?`K`(x
?)(x′ − x?) = 0, (B.31)

whereK` is the`-th row of K . Also, sinceh`(x′) ≤ 0 for all ` and sinceh`(x?) = 0
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for ` ∈ A(x?), we have:

∀` ∈ A(x?), h`(x′)− h(x?) = h`(x
′)− 0,

≤ 0.

We have that:

h`(x
′) ≥ h`(x

?)+ K`(x
?)(x′ − x?),

by Theorem 2.6, noting thath` is partially differentiable with continuous partial
derivatives and is convex by Item (i). Therefore, sinceµ?` ≥ 0 for ` ∈ A(x?), we
have:

∀` ∈ A(x?), µ?`K`(x
?)(x′ − x?) ≤ 0. (B.32)

By Item (i), h is convex so that{x ∈ Rn|Ax = b, h(x) ≤ 0} is a convex set. We
have:

f (x′) ≥ f (x?)+∇ f (x?)†(x′ − x?), by Theorem 2.6, noting that:

f is partially differentiable with continuous partial derivatives;
by Item (ii) of the hypothesis,

f is convex on the convex set{x ∈ Rn|Ax = b, h(x) ≤ 0}; and

by Item (v) of the hypothesis and construction,

x′, x? ∈ {x ∈ Rn|Ax = b, h(x) ≤ 0},
= f (x?)− [ A†λ? + K (x?)†µ?]

†
(x′ − x?),

by Item (iii) of the hypothesis,

= f (x?)− [λ?]†A(x′ − x?)− [µ?]†K (x?)(x′ − x?),

= f (x?)− [µ?]†K (x?)(x′ − x?), by (B.30),

= f (x?)−
∑

`∈A(x?)
µ?`K`(x

?)(x′ − x?)−
∑

` 6∈A(x?)
µ?`K`(x

?)(x′ − x?),

= f (x?)−
∑

`∈A(x?)
µ?`K`(x

?)(x′ − x?), by (B.31),

≥ f (x?), by (B.32).

Thereforex? is a global minimizer off on {x ∈ Rn|Ax = b, h(x) ≤ 0}. 2




