Black-Scholes Model
Solutions to Exercises

Send any remarks or questions to the following address: mmf.series@gmail.com



Chapter 1

Exercise 1.1.
Show that the process

S(t) = S(0) exp{put — %215 +oW(t)}.

solves

dS(t) = pS(t)dt + o S(t)dW (t).

Solution.

Apply the It6 formula (see [SCF]) with F(t,z) = S(0) exp{ut — %215 + oz},
X(t) = W(t) (so a(t) = 0, b(t) = 1) to find the stochastic differential of the
process F(t, W (t)) = S(¢t) :

ds(t) = Ft(t,W(t))dt+F$(t,W(t))dW(t)—|—%Fm(t,W(t))dt
= pE(,W(t)+oF(t,W(t))

since Fy(t,z) = (u — 202)F(t,x), Fu(t,z) = oF(t,2), Fuu(t,x) = 0?F(t, z).
Exercise 1.2.
Find the probability that S(2t) > 25(t) for some ¢t > 0.
Solution.
The inequality is equivalent to

2
exp{2ut — ot + oW (2t)} > 2exp{ut — %t +oW(t)}

and after rearranging this becomes

exp{o[W(2t) — W(t)]} > exp{ln2 — put + %2t}

which is equivalent to

1 o2
W(2t) —W(t) > —[In2 — ut + 7t]
o

Writing W (2t) — W (t) = vtX, where X ~ N(0,1), we can see that the proba-
bility of the above event is

o2

In2— put+ —t])

1-N(—= 5

U\f
where NN is the standard normal cumulative distribution function.
Exercise 1.3.
Find the formula for the variance of the stock price: Var(S(t)).
Solution.



First we find the expectation

E(S(t)) = S(0) exp{ut}

using the formula E(e*) = €2 V2"(X) where X has normal distribution with zero

expectation, and next we compute

E(S(t) — S(0)e)? = SQ(O)eQHtE(e—%Uzt-i-aW(t) —1)?
S2(0)e2HE (e~ HH2OW (D) _ 9p=3o”tHaW () | 1),

Finally,

E(6702t+2UW(t))

_ 2 2 2
e UtGQUt:eUt

E(ef%o%JraW(t)) - 1

SO
VarS(t) = S2(0)e2 (7t — 1).

Exercise 1.4.

Consider an alternative model where the stock prices follow an Ornstein-
Uhlenbeck process: this is a solution of dSi(t) = p1S1(t)dt + o1dW(t) (see
[SCF]). Find the probability that at a certain time ¢; > 0 we will have negative
prices: i.e. compute P(S1(t1) < 0). Hlustrate the result numerically.

Solution.

THe It6 formula gives the form of the solution

t
S1(t) = S(0)ert —|—/ oet =S qw (s)
0

and
P(Si(t) < 0) = P( / 1M T (5) < —5(0)eth).
0

The random variable fot o1e!1(t=9) W (s) has normal distribution with zero mean

and variance
t t
/a%ez“l(t_s)ds = U%emlt/ e 28 g
0 0

2
= U—l(eQ“It —1)
21

so
S(0)errt

2
(et 1)

P(S1(t) < 0) = N(—

With S(0) = 100, p1 = 10%, o1 = 30, (this parameter is related to prices, not
returns), t; = 1 we obtain 0.000231481.
Exercise 1.5.



Allowing time-dependent but deterministic o; in the Ornstein-Uhlenbeck
model, find its shape so that Var(S(t)) = Var(S1(t)).
Solution.

Var(S;(t)) = Var( /0 oel1 (=) g1y (s)) = L
VarS(t) = S2(0)e2(e” " — 1),

SO

o 2u15%(0)e2Ht (et — 1)
9= e2mt 1

Exercise 1.6.

Let L be a random variable representing the loss on some business activity.
Value at Risk at confidence level a% is defined as v = inf{z : P(L < z) > 155}
Compute v for a = 5%, where L is the loss on the investment in a single share
of stock purchased at S(0) = 100 and sold at S(T) with u = 10%, o = 40%,
T=1.

Solution.

The loss can be defined in a simplified way, setting L = S(T) — S(0) and
neglecting time value of money and lost opportunity in alternative investment,
or by taking L = S(T)e T — S(0), where the discounting uses the average
growth rate for stock (the risk-free rate would be inappropriate since the rate
should reflect the risk). We use the latter approach. Now

P(L < x)=P(S(T)e " —5(0) <)

o2
= P(S5(0) exp{;T +oW(T)} < x4+ 5(0))

x 0'2
= POV(T) < Sl + 1) - T)
1 x o2
= N—zln(gg + 0= 57T

Due to the monotonicity and continuity of the exponential function, v is the
solution to

a 1 v o?
SO
= 3(0)[exp{a\/fzv*1(1;:m) + %T} 1]

and we obtain —43.89 for the given data. (Often loss is defined as the opposite
difference so that it is positive when we lose the money and negative in case of
profit.)



Chapter 2

Exercise 2.1. 5 5
Prove that, for u < t, E(S(#)|F5) = S(u) exp{( — 7)t}.

Solution.
E[S(t)IFy]
= S(O)Efexp{ (1 — )t — 50t + oW (D}
= 5(0)exp{(p —r)t - %sz}E[GXP{U[W(f) — W(w)]} exp{oW (u)}|F}]

= 5(0) exp{ (s — 1)t — 50t} exploTW ()} Elexp (oW (1) — W ()]} 7S]

(taking out what is known)

S(0) exp{ (s — 1)t — 50°t} exp{oW (u)} exp{0®(t — u)}
(computing the expectation)

5(0) exp{( — ru — Lo+ oW (u)} exp{(n — r)(t )}

S°(u) exp{(u — )t}

Exercise 2.2.

Consider the following strategy: z(t) = % for t € [0,1), z(t) = 22(0) for
t € [t1,t2) and x(t2) = 0 with V(0), S(0) known, 0 < ¢; < ta prescribed in
advance (so all money is invested in stock at the beginning, then the number of
shares is doubled at time ¢; with liquidation of the risky position at time t3).
Choose the process y so that the strategy is self-financing. Within the Black-
Scholes model, with given p, o, v, what is the probability that y(t2) < 0?7 Give
a numerical example.

Solution.
Recall:
1 rt ! g
y(t) = 7 (7 IVO) + | a(w)dS(u)] - z(t)S(2)
(t) 0
so for t € [0,¢1), we have y(t) = 0, since for such ¢ the integral equals % [g(t) —
S(0)].

At time t; we have to borrow to finance the purchase of additional shares.
Before the purchase V' (¢t1) = 2(0)S(¢1) and after V(¢1) = 2(t1)S(t1)+y(t1)A(t1) =
2x(0)S(t1) + y(t1)A(t1) so to maintain the self-financing property we need
y(t1) = —aamy(0)S(t).

S(0) exp{(pu—r)t — %021%} exp{oW (u) }E[exp{c[W (t) — W (u)] (by independence)



At time to we have V(t2) = 22(0)S(t2) — ﬁx(O)S(tl)A(tg) before liquida-
tion and V' (t2) = y(t2) A(t2) thereafter. Again, by the self-financing property,

Yita) = s (o(OS(t2) = s a(0S(1)A(E))
Finally,
Ply(t) < 0) = P@S()A(R) < S(h)A(12))

2 2
= P(2exp{rty + ptz — %tz +oW(t2)} < exp{rts + pt1 — %tl +oW(t1)})

= P(Wlta) ~ W(t)] < 2= In2 4 r(ta — 10) 4 nlts — t2) ~ G (1 — 1)
= N(ﬁ[— In2+r(ty — tl) + /L(tl — tg) — %2(t1 — tg)])

Forta =2,t1 =1, = 10%, 0 = 30%, r = 5% we find 0.24254258.

Exercise 2.3.
Design a version of this strategy with positive risk-free rate.

Solution. The strategy in question is that of Example 2.18 (p. 22).
The modifications are as follows: at time ¢; we have to find x(¢1) so that
P(V(t2) < 2) = p. The bond position is

y(t) = A [V (t1) — z(t1)S(t1)]

and

P(V(tz) < 2) = P(I(tl)S(tQ) +

(V(t1) —z(t1)S(t1)] < 2)=p

has to be solved for z(t7).

Exercise 2.4.
Prove that if the value process of an asset B(t) satisfies the equation dB(t) =
g(t)B(t)dt, where g is a stochastic process, then g(t) = r a.s. for all ¢ > 0.

Solution.
The money market account satisfies



Take a strategy consisting of x(¢) units of security B(t) and y(¢) units of the
money market account A(t) such that

1 if B(t) > A(t)
x(t) = 0 if B(t)=A(t) , y(t)=—z(t)
-1 if B(t) < A(t)

The value of the strategy

V(t) = z(t)B(t) + y(t) A(t)
B(t) — A(t) if B(t) > A(t)
- 0 if B(t)=A(t) >0
{ A(t)— B(t) if B(t) < A(t)
satisfies
d‘;—f) = % (z(t)B(t) +y(t)A(t)) = x(t)%B(t) n y(t)%A(t)

a.e. with respect to t > 0, that is
dV(t) = z(t)dB(t) + y(¢)dA(%).

Therefore, we have a self-financing strategy such that V(0) = 0 and V(¢) > 0
for all ¢ > 0. By the no-arbitrage principle it follows that V(¢) = 0 for all ¢t > 0.
As a result, for almost all paths we have

which forces g(t) = r for all ¢ > 0.

Exercise 2.5: Given a filtration (F3);c[o,7] and an adapted process X with
a.s. continuous paths. Show that the first hitting of a closed set in R is an
Fi-stopping time.

Solution.
Suppose X is a process with a.s. continuous paths and A € R is a closed
set. Define the first hitting time of A by X as

TA(w) =inf{t <T: X(t,w) € A}.
Consider a nested sequence of open neighbourhoods of A defined by
Op={zeR:inf(la—z|:a€ ) < %},
and let 7, define the first hitting time of O,, by A. We check that for any t < T

we have
{m<ty= |J {X(r)eon}
reQ,0<r<t



If {X(r) € O, for some rational r < t, clearly inf{s : X(s) € O,} < t. Con-
versely path-continuity of X ensures that if this infimum is less than ¢, then
X(r) € O, for some rational r < t. So we have shown that {7, < t} € F;.

The decreasing sequence of stopping times (7,,), satisfies 7, < 74 for all n,
so 7 = lim,, 7, < 74. We show that the stopping time 7 must equal 74.

If 7 = 0 there is nothing to prove. On {7 > 0} we can find k£ = k(w) > 1 such
that 7, = 0 for n < k and 0 < 7,, < 741 < 7, since ¢ — X (¢, w) is continuous
for almost all w, so that, as soon as 7 (w) > 0, the first hitting times of O,, for
n > k are a strictly increasing sequence strictly below 7, as the O,, are open and
On41 is strictly contained in O,. But A = (1,5, On, and by continuity again,
X, = lim, X, . As X, lies in the closure O, of Oy, hence lies in O,, for
n < m, letting m — oo ensures that X,., € O,, which means that 74 < 7,
hence they are equal.

So we have shown that {74 < ¢} = [122,{7, < ¢} and the latter set is in
Fi, 80 T4 is a stopping time.

Exercise 2.6.
Prove that if f,g € M? and 71, 72 are stopping times such that f(s,w) =
g(s,w) whenever 7 (w) < s < T»(w), then for any ¢, < ¢,

ta

£(5)dWV (s) = / g(s)diW (s)

tl tl
for almost all w satisfying 71 (w) < t; <tz < T2(w).

Solution.

Fix t; < ty. By linearity we need only show that if f(s,w) =0 on {(s,w) :
71 (w) < s < 12(w)} then 2f(s)dW(s) =0for {w: nw) <t < mnw)} =
Alg(t). Note that Alg( ) S ]:t, since Alg(t) = {Tl < t} N [Q \ {TQ < t}] e F;.

Step 1. Suppose first that f € M? is simple

ft,w) = &o(w)lgoy(t) + Z&c W)Lty t1041 (1)

For any particular w, 71 (w) € (tmy s tmi+1]s T2(W) € (tmg, tmy+1] for some mq <
mz. For f to vanish on {(s,w) : 7 (w) < s < 7a(w)}, the coefficients & (w)
must be zero if k € [my,mz]. The stochastic integral is easily computed: let
t1 € (tny,tny+1]s t2 € (tny, tny+1] and by definition

( FOW)) )

’n2—1

D @)W (b1, w) = Wk, w)] + &na (W) [W (2, 0) = W (t,, w)]

n1—1

= Y @)W (s, w) = Wk, w)] + En, (0)[W (1, w) = W (tn, w)]-



If mw) <t <t < 1mw), &(w) = 0 for ng < k < ng so the above sum
vanishes.

Step 2: Take a bounded f and choose an increasing sequence of simple
processes f,, converging to f in M?2. The difficulty in applying the first part of
the proof lies in the fact that f,, do not have to vanish for 7 (w) < t < 7(w)
even if f does. Hence we truncate f, by forcing it to be zero for those ¢ by
writing

gn(taw) = fn(tvw)lAu(t) (t)

The idea is that this should mean no harm as f,, is going to zero anyway in this
region, so we are just speeding this up a bit. For any t, the random variable
14,,(4)(t) is 1 on Aj(t) which belongs to F;. So g, is an adapted simple process
and Step 1 applies to give

ta
/ gn(S)dW(S) =0 on {Tl <t <12 < 7'2}.
t1

The convergence f, — f in M? implies that Jnlanw) = flae = f in this

space so
to

/ : gn(8)dW (s) — f(s)dw(s) in L*(Q),

t1 tl

thus a subsequence converges almost surely, hence fttf f(s)dW(s) =0if {n <
t1 < t2 < 7o} holds on a set Q; of full probability. Taking rational times ¢ we
get,
qk
f(s)dW(s)=0on ] Q,
t a1k €Q,qr T2
which by continuity of stochastic integral extends to all ¢ € [0, T).

Step 3. For an arbitrary f € M? let fn(t,w) = f(t,w)l{ ftw)<n}(W).
Clearly f, — f pointwise and by the dominated convergence theorem this
convergence is also in the norm on M?2. By the It6 isometry and linearity it
follows that [ f(s)dW (s) — [;* f(s)dW (s) in L2(Q). But f, is bounded,
it is zero if {m < t1 < ta < T(w)}, so fttf fn(s)dW(s) = 0 by Step 2, and
consequently f:f f(s)dW(s) = 0.



Chapter 3

Exercise 3.1. )
Find the representation of M (t) = (fg gdW) - f(f g2ds.

Solution.
Write X (t) = fgg(s)dW(s), then M(t) = fot 2g(s) X (s)dW (s) (with g deter-
ministic).

Exercise 3.2.
Show that

EQ(1(s(ry>xylF) = N(=d(t,5(t)) +o/T —1)),
Eq(S(T)sryswylFe) = e T"ISEN(—d(t, S(1)).

Solution.
By restricting to the set where {S(T") > K} the call price can be written as

Ct) = Eq(e"T(S(T)— K)*|F)
= Eq(e""=9(S(T) - K)ls(r)>ky|Ft)
= Eqle " " IS(T) 1 s(r)>r}|Fe) — Eqle " "KL g(ry> x| F)

and in our calculation we dealt separately with these two terms to obtain the
claimed identities.

Exercise 3.3.

Find the prices for a call and a put, and the probabilities (both risk-neutral
and physical) of these options being in the money, if S(0) = 100, K = 110,
T=0.5,r=5%, u=8%, c =35%.

Solution.
The call price is 6.97167, while the put price is 14.2558. The risk-neutral
probability is 0.4363, and the physical probability is 0.46027.

Exercise 3.4.
Sketch the graph of o — C(T, K, r,5(0),0)

Solution.

10



Exercise 3.5.
Sketch the graph of the function k& — o (T, K,r,S(0),C) where S(0) = 100,
T = 0.5, r = 5% and the prices are as below.

K 85 90 95 100 105 110 115
C 21.59 18.3 14.67 1097 7.74 6.01 5.46

Solution.

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%
85 90 95 100 105 110 115

Exercise 3.6.
Consider the Bachelier model, i.e. assume S(t) = S(0)+ ut+oW (¢). Assume
r =0 and find a formula for the call price.

Solution.
From the Girsanov theorem we have S(t) = S(0) + cWq(1),

C0) = Eq((S(T)—K)")=Eq((S(0)+cWqo(T) - K)*)
1 _v?
= ﬁ/ﬂ@(S(O)‘FO'yVT—K)Jre 2 dy

Next S(0) + oyv/T — K > 0if y > ﬁ(K—S(O)) =:d so

) = \/% /d T(8(0) + oyVT — K)e= 5 dy

B 1 o0 7% oT [*° 674
- (S(O)‘K)E/d e dy+—rv2ﬂ/d ye % dy
_ oVvT _%

= (S(O)—K)N(l—d)—f'ﬁe .

Exercise 3.7.
Derive the version of the Black-Scholes PDE for the Bachelier model.

Solution.

11



We have to find u such that C(t) = u(¢, S(t)), so (with » = 0)

Ct) = Eq((S(T)—-K)"|F)
= Eq((S(t) + a[Wo(T) = Wo(t)] — K)*|Ft)
= P(S(1)

where (according to Lemma 3.13)
(2) = Eq((z + o[Wo(T) - W (t)] - K)*).
We find the lower limit of integration, d, by solving
z+oVT —ty— K >0

to get
1

> (K — :dt,
v= ox/T—t( 2 (t,2)
so that

¥(z) = % /d (z 4+ oVT —ty — K)e 3V dy

_ ovT —t _%
= (Z—K)N(l—d(t,Z))—f—We
= u(t,2)

We compute the partial derivatives to confirm that u satisfies the equation
informally derived here along the lines of Chapter 1: C(t) = u(t, S(t)) is an Itd
process, dS = udt + cdWg and

1
dC(t) = (uwp+ pu, + 502uzz)dt + ou.dW.
dC(t) = axpdt+ zodW

so that * = u, and the equation has the form
1
ur + §J2uzz =0.

Exercise 3.8.

Give a detailed justification of the claims of Remark 3.26.

Remark 3.26 : The above considerations show a deep relationship between
solutions to stochastic differential equations and solutions to partial differential
equations. The main idea is best seen in a simple case, so consider a version of
Lemma 3.23 with S(t +u) = x + oW (u), so that S(¢) = x, to find that if u is a
solution of

1
ur + 502%2 = 0, s<T,
uw(T,z) = h(z).



Then u(t,z + oW (T —t)) is a martingale and
u(t,z) = E(h(x + cW(T —1))),

which is a particular case of the famous Feynman-Kac formula.

Solution.

If u; + 20%u.. = 0 then u(s,z + oW (s — t)) is a martingale s € [t,T] (this
is the correct formulation, rather than w(t,z + cW(T — t)) as stated in the
Remark).

Write X (s) = u(s,z 4+ cW(s —t)) and by the It6 formula

1
dX (s) = uds + oudW(s) + §U2uzzds

T
w(T,x+oW(T —t)) = u(t,z) + /t ouz(s,x + o(W(s —t))dW(s)

which is a martingale provided u, (¢, z + oW (T —t)) is in M? — this additional
condition is required. Consequently, the expectation of the stochastic integral
vanishes which implies

u(t,z) = E(u(T,z + oW (T —t)).

Exercise 3.9.
Show that the function defined by u(t, z) = E(h(z4+0W (T—t))) is sufficiently
regular and solves uy + 20%u,. = 0, for s < T, with u(T, z) = h(z).

Solution.
The terminal condition is obvious: plug ¢t = T into u. Next

1
E(h(z + oW (T — 1)) = — /h(z +oVT —ty)e 2V dy
Vo
Then change variables: = z + ov/T — ty and since dx = ov/T — tdy

v (@2 g

maﬂ—/ e =

which is smooth by results from elementary calculus (the dependence on ¢, z is
taken out of i, which does not have to be smooth) and differentiation gives the
equation.

Exercise 3.10.

Given an European call C and put P, both with strike K and expiry 7", show
that deltac—deltap = 1. Deduce that deltap = —N(—d) and that gammap =
gammac.

Solution.

13



By call-put parity, deltac_p = 1 and the result follows from the linearity
of the delta operator. Since deltac = N(d, ), deltap =1 — N(d4) = N(—dy).
The relation for the gammas can be obtained immediately by differentiating the
relation for the deltas.

Exercise 3.11.

Show that analogous calculations, with T replaced by the time to expiry
T —t, and with d4 (¢) replacing dy, apply to give the Greeks evaluated at time
t<T.

Solution.
Routine differentiation gives

deltac(t) = N(d+(1)),
1 1 _
= mn(d+(t)), where n(z) = T
So —r(T—t
—5={d+ () —rKe TN (- (1)),
vegac(t) = SVT — tn(dy (1)),
rhoc(t) = (T — t)Ke "IN (d_(1)),

gamma(t)

thetac(t) =

where

ln% +(r£50®)(T—t
ovT —t '

Exercise 3.12.

Verify that thetap = thetac + rKe "(T=% where C' and P are a call and
a put respectively, with the same strike K and expiry T. Deduce a formula for
thetap.

Solution.
By call-put parity, thetac_p = —rKe (T the result follows from the
linearity of differentiation. Consequently
thetap = —in(d )—rKe "'N(d_) +rKe "
r WT -
So
= ———n(d)+rKe "TN(—d-).

14



Chapter 4

Exercise 4.1.
Derive the equation satisfied by the futures price assuming that the interest
rate is constant. Find the version in the risk-neutral world.

Solution.
If the interest rate is constant, the futures and forward prices coincide, the

latter is given by e"(T=YS(t) = X (t) and
dX(t) = —re"T08t) + T puS(t)dt + e" TS (t)dW (t)
= (= )X (1)t + o X (AW (D).

In the risk-neutral world for S this reduces to dX (t) = 0 X (t)dWq(t) so X is a
@-martingale.

Exercise 4.2.
Derive a formula for the price of an option written on futures, assuming that

the interest rate is constant.

Solution.
We have S(t) = e="(T=) X (t), so that by the Black-Scholes formula the call
price is
Cs(t) = SN (dy (8, (1)) — e T-DKN(d_ (¢, 5(¢)))

where

dJr(th) = K 5

d_(t,z) = di(t,z)—oVT —t.
Substituting the expression for X (¢) the call price on X is then

Crt) = e " T DXE)N(dy(t,SE)) —e " T DKN(_(t,S(t))
e " TOIX(8))da (1) — KN (da(1))].

where

(X + 02T — 1) _ m(E0TT) 4 02T 1)

gl — wx)t3 _
1() ovT —t ovT —t
In(24 Lo?) (T —t
= al K>+(T+20 ) )=d+(t,5(t), and
oI —t
da(t) = di(t) —oVT —t=d_(t,5(t)

This is the Black formula for a call on futures in a constant interest rate model.
A similar argument gives the put price from the BS-put-price for S(t).

15



Exercise 4.3.
Construct an alternative proof of Proposition 4.2 by observing that the func-

tion v, defined by v(t, z) = T —Yu(t, 2), satisfies
L 5 9 +
v + pzu, + 90 #7022 = pu, v(T,z)=(K—2)".
where p =1 — 6.
Solution.
—r(T—t) _

We write p = r — 6 and v(p, t,z) = e*T=Du(r.t, z), where, since e
e 0Tt e=r(T—1) we obtain

In(ie) & (o4 302 (T =8), ey oy 2 + (0= (T =)

vipt2) = 2N T T

By the previous chapter the function v satisfies the PDE

322 _
’Ut-i-pZ’Uz—l—ZU 2y, = pU

and the final condition remains, as before, v(p,T,z) = (K — 2)* = u(r, T, 2)
since 9(T-T) = 1.
Since
U= eé(T—t)u
we obtain
v ST=0y, _ 55T=1)y,
v, = STty
Vzz = 66(T_t)uzz
hence
ATy, — 55Ty + (r— 5)ze5<T*t)uz + 3022265@4%“ =(r— 5)65<T*t)u

and so the function u satisfies
1
ut + (’f’ - 6)ZU‘Z + 50222uzz =ru, t< T, z>0
u(T,2)= (2 — K)*

Exercise 4.4.
Show that, with Ny as in the bivariate normal distribution,

CC(O) = S(O)Ng(d+T1, S*), d+(T2, Kg);p)
—KQG_TTZNQ(d,Tl, S*), d, (TQ, KQ),p)
—K1€7TT1N1 (d, (Tl, S* (Tl)),
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where p = % and S* is the solution of the equation u(T1y, z) = S(TY).

Solution.
‘We have found that

cc)y = S(0) / . / r Ixix, (2, y)dady

_e_TT2K2/ fX1X2 ((E,y)d.’l]dy
T o
—e "I K (1 = N(z1)).

First, recall that fx, x,(z,y) remains unchanged when we replace x by 2’ =
—x and y by ¥’ = —y, and therefore for any real a,b we find

/ / fX1X2(x7y)d:Edy = / / fX1X2(x7y)dxdy
a b {z>a} J{y>b}

/ / fxix. (iCI, y/)dx'dy/
z’'<—a} J{y' <-b}
= NQ(—G,_b,p)

Apply this with a = z1,b = x5 to obtain e "2 Ky No(—x1, —x2; p) for the
second term above, and a = z1 — o/11,b = 29 — 0/T yields S(0)No(—z1 +
oVT1,—x9 + 0+/Ty; p) for the first. The third term is simply e "2 K1 N(—x)
by the symmetry of the (univariate) standard normal distribution function N.

Recall that 21 = ¢~ (K1), where

¢(z) = u(Ty,S(Th)) = S(T1)N(dy(T15(Th))
—Koe " TmTO N (d_(Ty, S(TY)).
We write S*(T3) for the solution of u(Ty,S(Ty)) = Ki, then x; solves the
equation
1
S(0) exp((r — 502)T1 +oVTx) = S*(T1),

so that

-
I S) — (r— 30T
1 o Tl )

which means that

In(=29) + (r — Lo2)Ty
gy = M) U7 57 =d_(T1,8*(Th))

g T1

We also have

In X2 —(r— 10?1y

oy, = __30 2
2 0'\/T2
3O 4~ 1o)T
_ K> ( 2 ) 2 :d_(Tg,Kg).

U\/TQ

17



Setting as = —x1, by = —x9 and a; = as + oVT; = dy (T, S*(Th) and
by = by + 0VTo = dy (Th, K»).

the formula for the call-on-call can be written, with p = ,/% and Ny = N,
as

CC(0) = S(0)Na(ay,br;p) — Koe "2 Ny(ag, ba; p) — K1e "2 Ny (as)
= S(0)N2(d+ Ty, S*(Th)), d+ (T2, K2); p)
—Kse "2 Ny(d-Ty, 8*(Th)),d— (T, K2); p)
—Kie "Ny (d_ (T}, S*(Ty)).

Exercise 4.5.
Prove that the unique solution of

dS(t) = p(t)S(t)dt + o(t)S(t)dW (t),

where the coefficients defined on [0, 7] are bounded and measurable, is of the
form

S(t) = 5(0) exp{/o [u(s) — %0’2(8)]615 +/0 o(s)dW(s)}.

Solution.

A routine application of the Itd formula shows that S(¢) solves the equation.
Uniqueness does not follow from the general uniqueness theorem proved for
SDEs in section 5.2 of [SCF], despite the fact that the Lipschitz condition holds
for linear equations, since random coeflicients are not covered. We follow the
proof given on pp 165-168 of [SCF] for constant coefficients.

Proof: Suppose Si, S are solutions, then

S1(t) - Salt) = / (]S () — So(u)]du + / o (£)[S) (1) — Sa(u)| AW (u)
0 0
and, since (a + b)? < 2a? + 202,
(S1(t) — Sat))?

- ( /O t pu(£)[S1 (1) — S (u)]du + /0 t o (t)[S1(u) — Sz(u)]dW(U))

2

< 2 < /0 t 1()[S1 () — SQ(U)]du) 2 +2 < /O t o ()[S1 (u) — Sg(u)]dW(u)) 2 .

Take the expectation on both sides
t 2
B0 - 50 < 28 [ w0100 - Satwa
0
2

+28 [ 05100 — Sa(wla )

18



The It6 isometry gives

t 2 t
E ( /0 o (1)(Sh (u) — S’g(u))dW(u)) _E /O o2(8)(Sh () — Sa(u))2du.

Next, exchange the order of integration in the integral on the right, which is
legitimate, since we are working with a class of processes where Fubini’s theorem
applies. Thus if we set

F(£) = E(S1(t) — S2(t))?

the inequality in question takes the form

f(t)

IN

2 s () ([ 1500 a6)n) 42 sup (020 [0

te[0,T] te[0,T]

2 ( /0 "51(w) - S’g(u)]du) a0 /0 " Fwydu

say, so we can follow the rest of the proof (using the Gronwall Lemma (Lemma
5.4 in [SCF]) without change.

Exercise 4.6.
Show that

M(t) = exp{—%/o b%(s)ds —/0 b(s)dW (s)}.
is a martingale.

Solution.
This process is called the exponentlal martingale. By the It6 formula with

F(z) =e®, X(t) = =% [T b%(s)ds — [, b(s)dW (s), so that dX (t) = —1b(t)dt —
b(t)dW (t) we have
AM(t) = —FI(X(t))%bQ(t)dt—Fm(X(t))b(t)dW(t)+%F11(X(t)b2(t)dt
= —M)b(t)dW ().

The problem boils down to showing that M € M?2, since b is bounded and
the same is true for the product. Since u(t) — r = o(t)b(t), b is determin-

istic (u and o are assumed deterministic) so fo s)dW (s) is Gaussian and
E(exp{ fo (s)}) = exp{3 fo b?(s)ds} which is square-integrable over [0, T'].

Exercise 4.7.
Prove that the discounted stock prices follow a martingale and

S(t) = S(0) exp{rt —/0 %(12(5)615 +/0 o(s)dWq(s)}

19



where Wq(t) = W(t) + fg b(s)ds, u(t) —r = o(t)b(t).

Solution.
The formula for the discounted prices is
~ tq t
S(t) = 5(0) exp{—/ 502(s)ds+/ a(s)dWq(s)}
0 0
which is the familiar exponential martingale provided o is sufficiently smooth.
For instance, boundedness is sufficient (o is assumed deterministic in this sec-

tion). An alternative is the Nowikov condition E[exp(fOT 0?(s)ds)] < oo, the
proof of which is beyond the scope of this text.

Exercise 4.8.
Find a PDE for the function u(t,z) generating the option pricess by the
formula H(t) = u(t, S(t)) for H = h(S(T)) for time dependent volatility.

Solution.
This is a straightforward generalisation of the Black-Scholes setting, and we
omit the details. The equation is

u(t, z) = —%UQ(t)zzuzz(t, z2) = r(t)zug(t, z) +rt)ult,z) for0<t<T,zeR.

Exercise 4.9.
Show that benchmarked pricing of plain vanilla options gives the well-known
Black-Scholes formula.

Solution.

This is immediate since the argument deriving benchmarked prices was based
on risk-neutral valuation, which leads to Black-Scholes formula. A dIrect argu-
ment is also possible. For ¢t = 0, for call

C(0) = E(exp(—al — bW(T)) (S(T) - K)¥)

1 9 1
@(#—T) T}E

| el LT SO explu + oyVT) - ) exp{— 327 )y

= exp{—rT —

and some elementary, though somewhat tedious, calculus gives the result.
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Chapter 5

Exercise 5.1.

Examine the case where Py (0) = P(0) (ordinary put).
Solution.

The ordinary put payoff is the limit of

Pyo(T) = (K — S(T))Jrl{maxte[oﬂ S(H<L}
as L — oco. The ingredients of the pricing formula also converge

In SOK _ (r — %02) T

dy = L= — —0Q,
i T
and s 1
2
oVT
214> —1
as L — o0, hence N(dz) = 0, N(ds) — 0. The factors (gh;) " and

2541

(%) = tend to infinity but slower that N(dz), N(d4)go to zero so in the
limit the second and the forth term in the formula for Py (0) disappear and we
end up with the ingredients of the Black-Scholes formula for P(0).

Exercise 5.2.

Consider S(0) = 100, K = 100, T' = 0.25, r = 5%, 0 = 25%. Is it possible
to find L so that Pyo(0) = $P(0)?

Solution.

Since Pyo(0) = 0 if L = 100 and converges to P(0) as L — oo, this must be
posible. For the given data we find L = 107.59026.

Exercise 5.3.

Sketch the graphs of Pyo(0) and Pyi(0) as functions of L.

Solution.

2.50 —p-UO

—p-U|

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130

Exercise 5.4.
Compute the initial price of an up-and-in put option with price K and barrier
L on a stock S.
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Solution.

Pyo(0) + Pur(0) = e " TEq((K — S(T))™).

Exercise 5.5.
Prove that Pyo(0) = u(0,.5(0)) where u solves

U +1rzu, + 5022211“ = ru
w(T,z) = (K—2)" foral0<z <L,
u(t,L) = 0 forall0<t<T.
Solution.
Writing
n& —(r—Le?)(T -t In 28 — (r — 1o2) (T -t
di(t,z) = e (T 20)( ), da(t,z) = N> (7‘ 20)( )7
ovT —1t ovT —1t
& —(r+L1o?)(T -t Iz — (r+10?) (T -t
ds(t, 2) = = (r+39) ), da(t, ) = —L7 (r+30°) ( )7
ovT —1t ovT —1t

2751
u(t,z) = e TTVEK lN (di(t,2)) — (£) N(dg(t,z))]

25 +1
—2 [N (ds(t,z)) — (é) N(d4(t,z))1 :

the problem boils down to checking that this function solves the PDE.

Exercise 5.6.

Prove that this strategy is admissible and replicates the payoff of Up-and-
Out put.

Solution.

The proof for the vanilla options can be repeated. The choice of z(t), y(t)
guarantees that

Vie) () = 2()S(t) +y(t)A(t) = u(t, S(t)).

We know that «(0,5(0)) = Pyo(0) and by the same token assuming that ¢
is the initial price, u(0,5(t)) = Puo(t) arguing and in particular Vi, , (T) =
u(T,S(T)) = Puo(T). The valueas are non-negative which implies the first con-
dition for admissibility. Since u(t, S(t)) = Pyo(t) and Pyo(t) = Eq(Puo(T)|F:)
is a martingale, it follows that f/(%y)(t) is a martingale. The self-financing prop-
erty of (z,y) follows from the relation (3.12) proved in Lemma 3.23

AV (1) = d [~ "u(t, S(1))]
=e oS (t)u(t, S(t)dWo(t)
= 2(t)dS;,

22



which is equivalent to the self-financing property, as we saw in Proposition 2.9.

Exercise 5.7.

Show that the joint density of (Y (T'), MY (T)) is given by

v MY 2(2¢—b) ,2c—0)
’ b,c) = n
L TVT ( VT

Hence find the joint density of (Z(T), M4 (T)), where Z(t) = oY (t) on [0, 7]
and use it to show that the premium of the lookback put is

) exp(vb — %V2T).

PL(0) = S(0)(N(=d)+e "N (—d+ \/T)—i—g—je_rT[—N(d— %T\/T)—i—e_rTN(d)]
where )
d— 2r +o

20VT
Solution.
On page 115 v was defined as v = 1(r — 15?). We also know that Y (t) =
vt + WQ(t) is a Wiener process under the equivalent probability R defined at
(5.3), with %b—(m = exp(—vWe(T) — 31°T). So

FYMY (b, ¢) = Bg[14] = Eg[e”Y D #7T)1,).

Now recall from the proof of Proposition 5.4 that for a standard Wiener process
W the joint distribution of W and its maximum is given by

b b—2c
—) = N(—=),
N
and the joint density by f(b,¢c) = %n’(%) For later reference, note that by
definition of n we can also write this as

~2(2¢—0b) b—2c)
f(b,C)— T\/T n \/T

Applying this to W& under the probability R, employing the Fubini theorem
and noting that

F(b,c) = N(

( )-

©2 ,x—2y) —Lni _nx—2c

we obtain
v < 1,
FYM () = /0 [/OO exp(ve — i T)f(z,y)dz]dy
b c
= /_ exp(ve — %V2T)(/O f(z,y)dy)dx
b x x —2c
= /_OO exp(ve — %V2T)%(n(ﬁ) - n(?;)d:v

B 1 1 z4b 24 (b—20)
= exp(vb 2V2T)\/T/_Ooexp(uz)[n(ﬁ) n( T )]dz.
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Now for any a,

1 0 z+a 1 0 1 z4+a4
ﬁ/_ooexp(uz)n( T Ydz = ﬁ/_ooexp(uz—§( T )¥)dz
1, O 1 z4a—uT
= exp(—va+ -v°T —n(———=)dz
vy D | )

a— I/T)

VT
(after adding and subtracting exp(—va + $v°T) and completing the square in
the penultimate step).

Using this with a = b and @ = b—2c in the calculation of the joint distribution
we have

= [exp(—va+ %VQT)]N(

Y)]WY c - b—I/T
1, 1, b—2¢c—vT
—{exp(vb — i T)exp(—v(b—2¢) + ¥ T)}N(T)}
b—vT 2oy 70— 2c =T
= N N

Differentiating with respect to b and c yields the desired density:

MY ~ 2(2¢—0b) 2c—b 1,
fYM (b c) = rois n( s )exp(ub—§V 7).

We need to consider Z(t) = oY (t) = (r— 20?)t+ cW<(t) and its maximum
process M#, since the premium of the lookback option is
Pp(0) = e "TS(0)Eg[eM (™) — 7).

We need the joint density of (Z(T), MZ(T)). This can be found from the above
density for (Y/(T).MY (T)), since o > 0, so that (where we set ( =r — £02 to
ease the notation)

b
P(Z(T) < bM*(T)<c)=PY(T) <~ M"(T) < g)
b— (T 2cC b—2c—(T
—exp(— ) N(————=——).
) — (S IN ()
Again we can find the density by differentiation:
(2¢ —b) (20 —b)
n
O'T\/T \/T

The density of the maximum M?Z is now found by integrating the joint density
over b, to obtain

= N(

b—1¢2T
yexp(L 2T,

FME ) = 2

M) = _Oo FZM7 (b, c)db
c— (T 2 2¢c —c— (T 2¢c c+¢T
= M) - Sen(pN () el S5 n((C).
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Finally,
Pp(0) = S(0)(e ' / M (e)de — 1)

which can be found by completing the square and integrating, so that, with
_ 2r+02

_20\/?’

we obtain

Pr(0) = S(O)[N(—d)+e*’“TN(—d+a\/f)+g—ie*TT{—N(d—2U—T\/T)+e*’”TN(d)}.

Exercise 5.8.

Investigate numerically the distance between geometric and arithmetic av-
erages of daily stock prices.

Solution.

For 100 daily steps, some prices simulated with ¢ = 10%, o = 30%, Ageom =
107.5783, Aarithm = 107.809

Exercise 5.9.

Compare the cost of a series of 10 calls for a single share to be exercised over
next 10 weeks, with the cost of 10 Asian integral geometric average calls

Solution.

For p = 10%, o = 30%, S(0) = 100, K = 100, the sum of prices of 10 calls to
be exercises at n/52, n = 1,...,10, is 46.0356. Single Asian integral geometric
average call has price 0.8484.

Exercise 5.10.

Compare the cost of a series of 10 calls for a single share to be exercised over
next 10 weeks, with the cost of 10 Asian discrete geometric average calls

Solution.

Here with n = 10, 10 Asian calls cost 39.4585
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Chapter 6

Exercise 6.1.
Show that aW; + bW, is a Wiener process if and only if a? 4+ b% = 1.

Solution.
Write W (t) = aWy +bWs. If W is Wiener, it has mean 0, so that its variance
is E(W?2(t)) = t. By independence,

E((aW; 4+ bW3)?) = a’E(WE(t)) + ’E(WE(t)) = t(a® + b?)

which implies that a? + b> = 1 Conversely, if a? + b = 1, the fact that W is a
Wiener process can be proved simply by checking that it satisfies Definition 2.4
in [SCF].

Exercise 6.2.
Prove carefully that }'t(Wl’WZ) = }'t(Sl’SQ) if C is invertible.

Solution.
In this case we can invert the relation
ch+ch
Sl(t) =5; (0) exp{,uit - Tf + cinWh (f) + cioWo (t)}
expressing (W1 (t), Wa(t)) = f(S1(¢), S2(t)) where f is continuous (f depends
on t). So the fields generated by the vectors (Wi (t), Wa(t)) and (S1(t), S2(t))
coincide for each t¢. This imples the claim since

Wi, W-
]_.t( 1,Wa2) — U(U F(Wl(s),WQ(S)));
s<t
S1,S
]__t( 1,52) — O'(U .7:(51(5).,52(5)))'
s<t

Exercise 6.3.
Find the correlation coefficient for W7 (t) and Wi(t).

Solution.
We compute the covariance between W7 (t) and Wi (t):

Cov

" 21 n 12 22 )
Ve +a Vet Ve + VG + B,

and the correlation is

C11C21 + C21C22
2 2 2 2
\/011 + C12\/021 + €39

26

C11 C12 C21 C22
(———=W1(t) + ————=Ws(t), ——=W1(t) + ———=
V C%l + C%z V C%l + 0%2 V C%l + 032 V 031 + 032
C11

Wa(t)



Exercise 6.4.
Suppose that Wi, Wy are independent Wiener processes. Show that p €
[—1,1] is the correlation coefficient between the random variables Wi (¢) and

pWA(t) + /1 — p>Wa(t) for any ¢.

Solution.
We compute the covariance: by bilinearity and independence

COV(W1 pW1 t + v1-— WQ
= pCov(Wr (), W1 (1)) ++/1— COV Wa(t))

as claimed. An alternative (direct) argument: Since Wi, Ws have mean 0,

COV(Wl le + \V 1-— W2 = E[Wl le + \V4 1-— W2
= PE[W2(1)] + /1 — p?E{Wy(t) )

pt

since E[W2(t)] = t and the second term is 0 by independence.
To find the correlation, note that, similarly,

E[{pWi(t) + /1 — 022 Wa(t)}?] = p*t + (1 — pP)t = ¢,

so that

t
Corr(Wy (t), pW1(t) + /1 — p2Wa(t \/g\/_ 0,

as claimed.
Alternatively one could use the result of the previous exercise.

Exercise 6.5.
Given V(0) and z;(t), i = 1,2, find y(¢) so that the strategy is self-financing.

Solution.

First we generalise the equivalent formulation of the self-financing property
by means of the discounted wealth process. Namely, (z1(¢), z2(t),y(t)) is self-
financing if and only if

dV (t) = x1(t)dS: (t) + x2(t)dSa(t)

with the same proof as for one asset (Proposition 2.9). Then, following Corollary
2.10, we have

y(t) = ﬁ (e”[V(O) —l—/o 1 (u)dSy (u) —l—/o Zo(u)dSs(u)] — x(t)S(t)) )

Exercise 6.6.
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Prove that if z1(¢) = wéxt()t), xo(t) = %(t()t) is self-financing then
dv(t) = [wips +wape] V(t)dt

+ [w1011 + szzl] V(t)dWl (t) + [w1012 + ’w2022] V(f)de (t)

Solution.
Direct substitution of the differentials and cancellations give

dV(t) = x1(t)dSi(t) + 22(t)dS2(t) + y(t)dA(t)
= wsltlv(vt(;) [/Ll S1 (t)dt + 1151 (t)dWl (t) + ¢1251 (t)dWQ (t)]
w;:/(t(;) [/,6252 (t)dt + 2151 (t)dWl (t) + 9959 (t)dWQ (t)]
+y(t)rA(t)de
= wim V(O)dt + wapaV(t)dt
—l—Cll’le(t)dWl (t) + c21 wgV(t)dW1 (t)
—|—012’w1V(t)dW2 (t) + ngﬂ)gV(f)de (t)

+

Conversely, inserting w; V' (t) = x;(t)S;(t) gives the self-financing condition.

Note that since w; are constant, the components of the strategy are Ito
processes.

Exercise 6.7.

Prove that each discounted stock price process S; (i = 1,2) is a martingale
with respect to @ (Hint: use independence and Proposition 6.1).

Solution.
Recall, that for i = 1,2, for each s < ¢, we have E(Wi(t)|]:s(W1’W2)) = Wi;(s),

and S;(t) = S;(0) exp{rt — @t + e W2(t) + ciaWL (1)}, so that

E(S; ()| FW1W2)) = 8, (0)E(e~ 2onten Wi’ (o= geht+enWs ()| F(WiWa))
_ Si(O)E(e—%cf2t+ci2W§(t) |]_~S(W1,Wg))E(e—%cflt-i-cilWlQ (t) |]_-S(W1,W2))
_ Si(o)ef%ciercigW?(s)ef% st W2 (s)
= Si(s)

Exercise 6.8.
Show that under ) the process of discounted values of a strategy is a mar-
tingale.

Solution.

Since d‘?(t) = I (f)dgl (t) + ,Tg(t)dgg(t) and dgl (t) = Ciggi(t)dle(t) +
ci2S; (t)dWQQ (t), the local martingale property follows but due to the form of
the stock prices, these processes are square integrable so Visa martingale.
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Exercise 6.9.

Prove that M@(t) is not a martingale with respect to ft(
W2)

W) and Q is not

risk-neutral with respect to }'t(Wl’

Solution.
It seems that the claim in the book is incorrect as it stands. In fact,

1 _ 2
MQ(T) — exp{__uT “ ‘2

) W () + (=) 2 Wit

is a martingale for the larger filtration, due to the independence of the Wiener
processes. However, the risk -neutral property does not hold. Under @Q the
process L2t + W (t), 0 = \/c? + ¢3, is a Wiener process but this does not

g
1 . / — C1 C2
imply that the components are: W'(t) = praw Wi(t) + e Wa(t) and
. c1 p=r c1 co p—r co .
neither i t+ e W1 (t) nor i t+ = W5 (t) are Wiener

processes under Q.

Exercise 6.10.
The random variable H = W1 (T) is not replicable since (T)S(T)+y(T)A(T)
is not ]—';V '-measurable.

Solution.
The random variable S(T') involves Wa(T') which is not F'*-measurable.

Exercise 6.11.

(Corrected formulation; the printed version has t as the variable of integra-
tion and as the upper limit of integration.)

Prove that the processes

¢ d
Si(t) = Si(0) eXp{/O pi(s)ds — % >

jl=1

t d t
/0 az-j<s>mj<s>ds+; / 015 (5)dW; (5))

solve (6.3), where i = 1,...,d.

Solution.
For fixed ¢ the one-dimensional Ito formula does the trick with

t d t d +
X(t) = X;(t) :/0 wi(s)ds — % Z /0 oij(s)oids + Z/o 0i;(s)dW;(s)

Gl=1
and F(t,x) = e®.
Exercise 6.12.

Prove that [X, Y](t) = [5 bx (s)by (s)ds.
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Solution.
This follows from the parallelogram identity

X, V() = i[mmm(w S 0

and the fact that [X, X]( fo b% (s)ds, since on the right we have

1] e @as = [ —b)? (s

and a bit of algebra does the trick.

Exercise 6.13.
Prove that X (¢)Y (t) — [X, Y](t) is a martingale.

Solution.

Using ab = 1(a+b)?— 2(a—b)? and [X,Y](t) = 1 [ X +Y, X +Y](t) - :[X —
Y, X —Y](¢) we find that the process takes the form
1 1 1 1
1 XY () = 2(X (1) =Y (1)* = 7 [X +V, X +V](t) + 7 [X -V, X - Y](®)

which is the sum of two martingales.

Exercise 6.14.
(Corrected formulation: in the printed version by, and by were interchanged
in error)

Prove the following formula [Y1,Y5](¢ fo b11(8)b12(8) + b21(s)b22(s)) ds
, where Yk fO bik(s dW1 + fO b2k de( ).

Solution.
Inserting we have

Vi, Yal(t) = | / iy (5)dW () + / bas (5)dWo(s), / bua(s)dW () + / baa(s)dWa(s)] (1)

so that we get four terms on the right, with

[ / bus (5)dVV (s). / bials)dWW ()] (1)

= 10 B + bl [ B + b))

1 t t
4l / 11 (s) — bua(s)]dW (s), / 11 (s) — buals)]dWi ()] (1)

= %/0 [b11(s) + bra(s))?ds — i/o [b11(s) = baa(s)]*ds

= /0 (b11(8)b12(s) + ba1(8)ba2(s)) ds
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and the same for the term with W5, so it remains to show that

[ /0 box (5)dW (s), /O brs(s)dW3 (5)](£) = .

One can show that the expectation of the square is zero by approximating the
stochastic integral. The square of approximating sums will involve terms of the
form

E(b21 (t:)[W1 (tit1) =W (t:)]ba1 () Wi (8j41) = Wi (t)]br2 () [Wa (tk1) = Wi (k)] b12(t) [W1 (Ens1) =W (tn)]).

A number of cases have to be considered. The extreme caseisi =j =k =mn
and conditioning on F;, and using the independence of W; and Wa, we can
estimate such a term with (¢;411 — ti)2 and the sum can be shown to go to zero.
If i = j < k = n then we condition upon F;, and get

(ths1 — te)E(b3, () [Wr (1) — W (£:)]?b3a (tk)).-

The sum of random variables under expectation is finite since the b’s are bounded
and the Wiener process has finite quadratic variation. The remaining cases are
easier to handle with the expectation being simply zero at the other extreme,
when i < j < k < n.

Exercise 6.15.

Verify the uniqueness of It6 process characteristics, i.e. prove that X; = X5
implies a1 = a3, b11 = b21, b1 = bos by applying the It6 formula to find the
form of (X1 (t) — X2(t))?

Solution.
On the one hand, we write X( ) = (X1(t) — X2(t))? and apply the Ito
formula: F(zq1,x9) = (171—:172) , =2(x1—x2), Fr, = —2(x1—22), Fry0y = 2,

lewg - ngwl - 27 szmz - 2 and

iX(t) = 2X(t)[a1(t) — an(t)dt
X(t) [bu( ) = b21(8)|dWi (t) + 2X (¢)[b12(t) — ba2(t)]dWa(t)
[ 1 () = bra (£)bay () + b3, (£)]dt + [b7o(t) — bia(t)baa(t) + boy(t)]dt

On the other hand, X(¢) = 0 so dX(t) = 0 and by the uniqueness of Ito
decomposition we confirm our claim.

Exercise 6.16.
This is identical to Exercise 6.11

Solution. As in Exercise 6.11

Exercise 6.17.
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Prove that

dsS;(t) dt+ch (OdWR(), i=1,....d.

Solution.
Since W2(t) fo s)ds + Wi(t), we have dW2(t) = 0;(t)dt + dWi(t) so

t)dt + ch (t)dW 2 (t)

= t)dt + Z ci;(t t)dt + Z ci;(t W(t)
= rS(t)dt + [pi(t) — 7]Si(t)dt + Z cij (8)S:(t)dW;(t)

d
= wi(®)Si(t)dt + > ij(t)S;(t)dWi(t)
j=1

which ithe same as dS;(t).

Exercise 6.18.

Derive the equation for the process Y (t) = g? 2 and find the explicit formula
for the exchange option.

Solution.
We use the Ito formula with
T2
F(xy,22) = o
X9 1
le(xlv'IQ) = _LL'_%7 Fz2(x17x2):x_la
i) 1
leml(x17x2) = 2:6_;1?,7 FI112(I1aI2) = _LL'_%, F12I2(I1ax2) =0,

and employing (we assume constant coefficients for simplicity)

d
dSi(t) = piSi(t)dt + Y iy Si(t)dW;(t), i=1,2,

we find
dy(t) = Y(t)|[—p1+ peldt
Y (t)[—c11 + ca1]dWi (t)
Y (t)[—c1a + cag)dWoa(t )
+Y (t)[c}, — er1ca1 + c1y — c12¢02)dt

= puyY(@)dt + Y (t)ordWy + Y (t)oadWa(t), say.
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Now introducing a single Wiener process

W1 (t) —+

g1

/2 2
o1 + 05

02

/2 2
o1 + 05

W(t) = Wa(t)

we have

dY (t) = uy Y (t) + oY (£)dW'(t)
where 0 = \/0f + 03. Since H(0) = 51(0)Eq, (max{1-Y(T),0}), we can use the
Black-Scholes formula having identified the volatility of Y : we insert the initial

value is gjgg;, the strike K = 1, and volatility o = /(ca1 — c11)? + (c22 — c12)?.
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