Applied Optimization:
Formulation and Algorithms
for Engineering Systems
Slides

Ross Baldick

Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712

Copyright(©) 2018 Ross Baldick



Part Il
Unconstrained optimization



9
Case studies of unconstrained optimization

(i) Multi-variate linear regression (Secti@nl), and
(i) State estimation in an electric power system (Sec8@).



9.1 Multi-variate linear regression
9.1.1 Motivation

e Suppose we have a hypothesized functional relationshypdaset
dependent variablesthat vary according to some function of some
independent variables

e \We do not have a complete specification of the function radgitne
variables.

e For example, if the hypothesized function is linear, theiestin
coefficient matrix will typically be unknown to us.

e These unknown entries are called pgerametersof the function.



9.1.2 Formulation
9.1.2.1 Measurement variables

e Assume that there is one dependent variable in our problehcalhit .
e Also assume that there afe— 1) independent variables.
e Collect the independent variables together into a vapterR" 1,

9.1.2.2 Functional relationship
e \We believe that there is an affine relationship betw&and.

Ve e R =BTy +y. (9.1)

e We want to find the unknowns in the vectos [5] e R".



9.1.2.3 Trials

e We can perform a number of “trials” with varying values foeth
independent variablap.

e We use)(¢) and{(¥), respectively, to denote the value of the independent
variables and the corresponding measured value of the dependent
variable( for the ¢-th trial.

Fig. 9.1. The values of

(P(£),2(¢)) (shown as
v x) and affine fit.




9.1.2.4 Measurement error

{(0) =B'w(O) +y+er. 9.2)
e The measurememtrror e is also called theesidual.

Calibration error

e There may be a function: R — R, called thecalibration function, such
that:

BTW(0) +y=12(¢) —c(L(¢)).
Functional error

e The errore; may be due to error in the assumed functional form:
{=B'y+y'ry, (9:3)

e wherel' € R(™-1*("-1) is 3 matrix of unknown parameters.



Random error

e The errore; may berandom with expected value, say, O.

e That is,( also depends on other variables besilébat we can neither
control nor measure easily.

¢ It may be reasonable to model these errors as random variddaevary
independently of the trials as in the following examples.

Black-box circuit
¢ It may be reasonable to assume that the temperature is mdieqmeof the
injected currents.

Drug efficacy

¢ It may be reasonable to assume that immune system propeaties
randomly from patient to patient and are independent of yngosoms,
drugs, and treatment.

Discussion

e We should be very cautious about asserting independenaedethe
independent variablep(¢) and the erroe,.



9.1.2.5 Random error distribution
e We will only consider random error in this case study.

Central limit theorem

e Suppose that there are a number of factors that sugnitotrial /.
e Thecentral limit theorem says that the sum of a large number of
independent random variables has a distribution that isoxppately

Gaussian with density:
1 (e — H£)2>
expl ———=— |, 9.4
V210 p< 2(0y)? O
e Whereyy is the expected value &, in our case 0, and, is its standard
deviation.

Error correlation
e We will assume thag, is uncorrelated witle, for £ = ¢'.



Distribution of dependent variables

_ @Bt _\W)\2
R0 € R (0000 = ———exp( LELTEIV),

e \We use a semi-colon to separate the arguments of the furfobionthe
parameterg)(¢) andx.
Joint measurement distribution

e If the error distributions arpintly Gaussian and uncorrelated then the
joint probability density functiong: R™ — R, is the product of the
individual probability densities:

V(1) €R,...,v{(m) € R,o(Z(1),.. Z(m),tp(lz Y(m),x)
_ 1 exp( (€(6) Bw v)) 9.5)




9.1.2.6 Problem variables

e After performing the trials, the values @f(¢) and{(¢) are known and we
will re-interpret them as constants.

e The unknowns are the paramet@randy in the relationship4.1).

e We have collected together these parameters into the veatar they
will be re-interpreted as the variables in our problem fdatian since
they are the values that are to be determined to solve owggsign
problem.



9.1.2.7 Maximum likelihood estimation

e Need a criterion for choosing the “best value.”
e Suppose that we are given:

— a collection of measurement$l) € R, ..., {(m) € R,
— values of the parametexs= R", and
—adistancd € R..

e Suppose we take new measureme%(t’s), ...,¢(m) using the same
values of the independent variables

e Consider the probability that the new measuremé(ttis, iy .,Z(m) lie in
the set:

S(X)={{(1) €R,....,{(M) ERZ(() —d<L(£) <L) +3, ¥ =1,...,m}.
e This probability is approximately equal to:

O(2(1),--.,{(M); (1), w(mM),x)(25)™.



Maximum likelihood estimation, continued

e We pickx € R" to maximize the probability that the new measurements
are in the seB(x), which is equivalent to maximizing:

@), -, ((M);W(D), ..., Y(m),X)

e overx € R".
e \We now maximizep, re-interpretedto be the functionp: R" — R defined

by:
VXE]R”,(p(Z(l),...,Z(m);qJ(l),...,qJ(m])L,x) 2
1 (2(0) —Blw(e) —y)
lmofx'“(‘ 2(0,)2 )
(W) B+y—T(6))?

1
— l\/Ewgexp<— 200, ), (9.6)

| 3

| 3

e Wherex = [5] .



9.1.2.8 Problem
e The maximum likelihood estimation problem:

maxe(((1),..., (M) W(2),..., w(m), x). (9.7)

9.1.3 Change of number of trials or correction of data

e We may find that after solving the maximum likelihood estimaiising
trials 1, ..., mwe conduct further trials or find that some of the data is in
error and needs to be corrected.

e We would like to be able obtain an updated estimation witlstatting
from scratch.



9.1.4 Problem characteristics
9.1.4.1 Parameters re-interpreted as variables

e \We have re-interpreted thparameter§3 andy of the probability density
in (9.5) to be thevariablesin our optimization problem.

e We interpret(¢) and{(¢) to beknownvalues once the trials have been
completed.

9.1.4.2 Objective

e The objectivep({(1),...,{(m); Y(1),...,P(m),x) is the product of terms.
e Each term in the product depends»on

9.1.4.3 Number of parameters and trials

¢ If m < nthen there is no redundancy and we will not be able to redwee th
effects of measurement errors.

9.1.4.4 Generalizations

e In some cases, we may have a non-linear relationship bettheen
dependent and independent variables, a8.i).(



9.2 Power system state estimation
e We formulate anon-linear regressionproblem.

9.2.1 Motivation
9.2.1.1 Non-linear regression

e Suppose that we hypothesize a non-linear relationshif, ast = y()®,
between scalanp and{ with unknown parametei$ andy.

e A standard approach for this particular non-linear refehaop is to take
logarithms of both sides to form the equation:

In(¢) = BIn(w)+In(y),
W= In(y),
Z = In(Q).



Non-linear regression, continued

e We have implicitly defined an onto functian RZ . — R?and a
transformed functional relationship specified by:

Y 2 Uiy _ [In(w)
g estor(¥]) - [1e)
Z = BY+T.
e It is not always possible to find such a transformation.

e For example, consider a functional relationship betweatass and(
of the form:

L=vy(p)P+ay.

e \We cannot transform this equation in a way such that all thkaowwn
parameter§,y, andd (or their transformed versions) appear linearly.
e Such a problem is calledreon-linear regressionproblem.



9.2.1.2 Power system measurements
e \WWe may want to observe tlaetual state of the system to check if the
system is operating within limits.
e The state estimation problem involves finding the voltaggiesand
magnitudes in the system that best match the measured values



9.2.2 Formulation
9.2.2.1 Measurements

e Real and reactive power injection at a bus;
e Real and reactive power flow along a line; and
¢ \oltage magnitude.

u Y.

i 12
P12, Q12
¢—m—{ Vi3] Y23
1165, Q13 3 2
P1,Q1,U;
E C'\) Fig. 9.2. Three-bus
neutral power system sState

estimation problem.



Real and reactive power injection

e LetB be the set of buses where there are measurements of thedeal an
reactive power injections into the system.

e In Figure9.2 B = {1}.

Real and reactive line flow

e LetF be the set of lines where we have line flow measurements.

e In Figure9.2 F ={(1,2),(1,3)}.

Voltage magnitude

e Finally, letU be the set of buses where there are voltage magnitude
measurements.
e In Figure9.2, U = {1}.



9.2.2.2 Variables
e Change the definition of in Section6.2to include:

— the voltage angles at all buses except the reference bus, and
— the voltage magnitudes at all buses in the system, inclutieg
reference bus.

e Now x € R", wheren is equal to one less than twice the number of buses,
so that the vectax has been re-defined compared to Secéiéh



9.2.2.3 Measurement functions

e Recall the definitions of the functions,q, : R" — R in (6.12 and 6.13
that were used in the power flow case study:

XERYL p(X) = Y Uk[Gucos(B; — Bk) + Bucsin(6, — 6] — P,
keJ(£)u{l}

XERYLQ(X) = Y u[Gasin(8; — Bk) — Buccos(B; — Bk)] — Qr.
ke (D10}

e Let us define new functions by omitting the values of the redl@active
injections,P, and Q.
e Thatis, defingy;: R" — R anddy : R" — R to be:

VXERY () = > Uk[Guccos(B; — Bk) + Bucsin(6, — By )],
kel (0)u{¢}

XERYLG(X) = > u[Gusin(8;, — B) — Buccos(B; — ).
keJ(£)U{¢}



9.2.2.4 Measurement functions
e \We denote the measurement functions by:

Bs,Gs,  for the real and reactive power injection measuremémtsB,
Pek, Gk,  for the real and reactive line flow measuremefitk) € I,
by,  for the voltage magnitude measuremehts U.

e We collect the measurement functions into a vector fundjiand collect
the measurements together into a corresponding vector

'@<x>] ( E’e] )
=G|g(X) /eB - =Qf /eB
vx € R" §(x) = Pr(X) ,G= Eﬂk]
| A(¥) | (1 er | Quk] (¢ yer
[Gﬁ(x)]ﬁeU K [UE]KGIU

e Let us define a new index skf that specifies all the measurements,
e We re-index the entries @f andG using the sebl, so thatg= (Gk)kem
andG € RM.



9.2.2.5 Error distribution

e Assuming independent Gaussian measurement errors theanwerite
the probability densityp: RM — R, of the measurement vectGras the
product of probability densities:

|_| (pﬁzk(lszk;x)
€F

VG e RM @(G;x) = J‘| (ppg(l%;x)ﬂ @5, (Qr; X)
B B 0k
X @i (Quc X) [ @, (Ui; %),
(K,DGF . J;L '

o where each functioms, (Ps; X), @, (Qr; X), @p, (P X), @i (Quii X), and
¢, (Ug; X) represents the probability density function of the coroesiing
error distribution and is parameterizedy



Error distribution, continued
e For example,

VP, € R, @5, (Pr; X)

1 exp((m(x) - F~’£)2)
V21op, 2(0p,)% )

e whereay, is the standard deviation of the measurement error of real
power at bug and where we have assumed that the expected error is zero.

e After the measurements are made, we can re-inteqaiebe a function
¢@:R" — R. That is, we re-interprap as being defined by:

vxeR"O(G;x) = [1@5,(P;x) [ @6 (Qr; x ®5,. (Pri: X)
(P( ) Jqu pz( [4 J;!B(p%( 14 )(g,llgle[g‘ p£k< rk
< 7 Cquk(sz;X)ﬂ @, (Up; ).
eU

(L k)eF
e Our maximum likelihood estimation problem is then:
max@(G; x). (9.8)

xeRN



9.2.3 Change in measurement data
e We will consider how a change in measurement data affectetust.

9.2.4 Problem characteristics
9.2.4.1 Objective

e The objective of this problem is very similar to that of mui#iriate linear
regression Problen®(7), except that each term in the product has one of
the non-linear functiong,; G, Prk, Gek, Or Uy in the exponent instead of the

linear measurement equatiqu)TBer.



9.2.4.2 Solvability

e The measurements shown in the system illustrated in Fig@rieave just
enough information to determine all the values of the esifine.

e It is important to have redundancy of measurements in theisyand to
“spread out” the measurements across the system as itetsira

Figure9.3

— 2 |
P12, Q12
1¢ II Y13 3 | Y23 2
mP,Q Uy P3, Qs P2, Q2 Uz Fig. 9.3. Three-bus

power system state

C’V) (’D estimation problem

neutral with spread out mea-
surements.




10
Algorithms for unconstrained minimization

e In this chapter we will develop algorithms for unconstramgptimization
problems of the form:

in f
min f(x),

e wherex e R"andf : R" — R.



Key issues

e Descent directionsto reduce the value of the objective,
e optimality conditions based ahescent directions

e optimality conditions folconvex objectives

e the development aferative algorithms, and

e sensitivity analysis



10.1 Optimality conditions
10.1.1 Descent direction
10.1.1.1 Analysis

Definition 10.1 Letxe R"andf : R" — R. Then the vectofAx € R" is
called adescent directionfor f atXif:

Ja e Ry suchthatO< a <) = (f(X+alx) < f(X)).



10.1.1.2 Example

vx € R?, f(X) = (x4 — 1)+ (xo — 3)2. (10.1)
X2
.l ] Fig. 10.1. Descent
direction (shown as
i the longer arrow) for
of 1 a function at a point
al | A 2
X = 1] shown as
i a o. The contours of
3| 1 the function decrease
. 1
~af 1 towards xX* = 3|
S 4 3 2 a0 1 2 3 a4 s X1 which is shown as a.




X2

10.1.1.3 Steepest descent step direction
e Ax= —[f(X) is called the direction ofteepest descent

Fig. 10.2. Steepest

descent directions for
a function at various
points. The contours of

the function decrease

. |1
towards x* = 3|

which is shown as a.



10.1.1.4 Analysis

Lemma 10.1 Let f: R" — R be patrtially differentiable with continuous
partial derivatives and lex € R", Ax € R". Suppose thdilf (X)TAX < 0.
ThenX is a descent direction for f &t
Proof Let@:R — R be defined by:

Vt € R, Q(t) = f(R+1LX).

By the chain ruleg—t(p(t) = g(XHAX)Ax. Evaluating this at = 0 yields:
d of .
70 = 5 (R
= Of(R)"x,
— —2¢,

say, wheree > 0 by assumption.



Proof, continued But, by definition, sinced is partially differentiable
with continuous partial derivatives,

do X+ ax) — f(X)
dt (0= oI(ILno o '
Letd € R, be small enough such that

(O<|a|§ﬁ):< f(X+ax)—f(X) do

. — O ( )' < e) :
But this means that:
f(X+ax) — f(X)

O<|al <) = (‘

which implies that:

(0<|a] <@) = <f()“(—|—O(AX)— f(X) < _8).



Proof, continued So:

O<a<a) = (f(X+ax)—f(X) <—ae<0),
= (f(X+aix) < (X)),

andAx is a descent direction fdratx. O

o [Jf(X )TAX is called thadirectional derivative of f at Xin the direction
IX.

e Analytically, the condition in Lemma0.1thatf (X )TAX < 0 requires that
the directional derivative in the directidx be negative.

e Geometrically, this condition requires that the angle leetm/x and
—0f (X) be less than 90for Ax to be a descent direction as illustrated in
Figure10.3



Descent directions
X2

/

Fig. 10.3. Various
descent directions for
a function a particu-
lar point X = 3].
-3
The contours decrease
towards the point

. (1 o
X* = [3] which is

shown as a.



Corollary 10.2 LetX € R", let M € R™" be positive definite, and let
f : R" — R be partially differentiable with continuous partial deatives
and such thatlf (X) # 0. Then& = —M Uf (X) is a descent direction for

f at X.

Proof Note thatDf (%) 'ax = —Of (X) "M Of (%) < 0, sinceM is positive
definite andf (X) # 0. Apply Lemmal0.1 O

e The “middle” arrow in Figurel0.3shows the steepest descent step
direction atx; corresponding to the choidé = I.

e The other directions correspond to other choices of pesdefiniteM
and also yield descent directions in tHais also reducing in these
directions away fronx.”



10.1.2 First-order conditions
10.1.2.1 Necessary conditions

Theorem 10.3 Let f: R" — R be partially differentiable with continuous
partial derivatives. If X is a local minimizer of f thenlf (x*) = 0.

Proof We prove the contra-positive. That is, we prove that if
Of (x*) # 0 thenx* is not a local minimizer. LeM € R"™" be positive

definite. By Corollaryl0.2 Ax = —M Of (x*) is a descent direction fair
atx* and sox* is not a local minimizer off. O

e The statement and proof of Theordifd.3 respectively, suggest two
approaches to finding a minimizer 6f

(i) solvef (x) =0, or

(if) from the current poink, move in the directiodx = —M 0f (x),
whereM is positive definite.



10.1.2.2 Example of insufficiency

Fig. 10.4. Graph off
and points (illustrated
by the o) satisfying
[Of(x) = 0 but which
may or may not corre-
e = a4 o 1z a4 X spond to a minimum.




Example of insufficiency, continued

Fig. 10.5. First deriva-
tive [If of the functionf
shown in Figurel0.4

X>»©
> el



Example of insufficiency, continued

e [Jf (x) = Ois not sufficient to guarantee a minimum,
e We call points that satisfylf (x) = O critical points.

e Not all critical points are minimizers.

e For the function shown in Figur&0.4

(i) Xx= -3, f(X) = 8, a local maximizer and maximum &f
respectively,
(i) Xx=0, f(X) = 0, ahorizontal inflection point of f, and
(iii) x* =3, f(x*) = —8, a local minimizer and minimum df,
respectively.



10.1.3 Second-order conditions
10.1.3.1 Necessary conditions
Analysis

Theorem 10.4 Let f: R" — R be twice partially differentiable with
continuous second partial derivatives and suppose that & local
minimizer of f. Then:

Of(x) = O, (10.2)
0% (x*) is positive semi-definite  (10.3)



Example

1% (X)

20

15

101

Fig. 10.6. Second
derivative 0% of the
n ; . . X function f shown in
Figurel0.4

-15}F

-20
-4

x>y ©
>



Example, continued

e Again consider the functiof shown in Figurel0.4

e |ts first and second derivatives are shown in Figdt@$and10.6
respectively.

e Sincef : R — R in this case, the Hessidfrf : R — R is positive
semi-definite if and only if it is non-negative.

e The critical points off are at:

X = —3. At this point, the Hessian df, shown in Figurel0.6 is negative
and hence not positive semi-definite. Therefore, by Thedr@ X = —3
cannot be a local minimizer df.

% = 0. At this point, the Hessian of is zero and hence positive
semi-definite. The second-order necessary conditionsasisfisd but by
inspection of Figurd0.4 X= 0 is clearly not a minimizer.

x* = 3. This point is a local minimizer of. Figure10.6and Theoreni0.4
both concur that the Hessian is positive semi-definite.



10.1.3.2 Sufficient conditions
Analysis

Theorem 10.5 Let f: R" — R be twice partially differentiable with
continuous second partial derivatives and suppose that:

Of(x*) = 0,
0%f (x*) is positive definite
Then X is a strict local minimizer of f.

Proof By hypothesis[1%f (x*) is positive definite andl*f is continuous.
Therefore:

Je € Ry | such that||x* — x| < &) = (0% (x) is positive definité.
(10.4)
Let Ax be any step direction such thak0||Ax|| < € and defingp: R — R

by:
vt e R, @t) = f(X"+1X).



Proof, continued Then:

dt
20)

Q_

90 —

= 0, by hypothesis,

of
o0x (x
of ,
G—X(X )AX,
Of (x°) "'

X)X,

(10.5)
2
Ang—X} (X* 4 tAX) X,

0OV0o<t<1, (10.6)

where the last inequality follows froni(.4) since/x ## 0 and since:

0<t<1)= (|x -

X)) || =t x| <[] < e).



Proof, continued We have thatp(0) = f(x*) and:

VX € R (0 < || X|| < €) =
F(X"+0x) = (1)

14d
— <p<o>+/t: @
t d2(p

_ o0+ [ d‘p(0)+ @@yt | dt
t=o0 | dt t’ odt? ’

d2 )dt'd
— t'dt,

d2
= o+/ / —2—t’ dt’dt, by (10.5),
(p( ) t—0 t:Odt ( ) y( 3
> f(X¥), since the integrand is strictly positive biQ.6).

That is,x* is a strict local minimizer[d

e Positivesemidefiniteness of the second derivative matrix at a critical
pointX is not sufficient to guarantee th&tis a minimizer.



Example
e Continuing with the example from Sectid9.1.1.2 note that:

YXERZ f(X) = (x1—1)%+ (x2—3)%,

2 0
Vx e R, 0% (x) = [o 2],

e Which is positive definite.
e Therefore, by Theorer0.5 the pointx* = [%] Is a strict local

minimizer of f.



Example of insufficiency

vxeR, f(x) = —(x)*

| |
0.5 1 15 X

X»ol

Fig. 10.7. A critical

point X = 0, illustrated

by theo, where the sec-
ond derivative matrix is
positive semi-definite at
X yet the point is not a
minimizer.



Example of insufficiency, continued

e Consider the point = 0 as illustrated in Figur&0.7.
e In this case:

x>

0f®) =

0% (X)

I

|

-

N
—~

x>
N—"
I_IN

e SO that:
VX € R,0 = X% (X)X > 0,

e and soDZfA(f() IS positive semi-definite.
e However,Xx = [0] is clearly not a minimizer of .



10.1.4 Convex objectives
10.1.4.1 First-order sufficient conditions
Analysis
e If f is twice partially differentiable with continuous part@rivatives

and the second derivative matrix bis positive semi-definiteverywhere
then the objective is convex by Theoreny.



Corollary 10.6 Let f:R" — R be convex and partially differentiable with
continuous partial derivatives oR" and let X € R". If Of (x*) = Othen
f(x*) is the global minimum and"xs a global minimizer of f.

Proof Recall Theoren2.6. The hypothesis of Theoreth6is satisfied
for S =R". Consequently,2.31) holds, which we repeat:

vx,X €, f(x) > f(xX)+0f (X) (x—X).

Letting X' = x* andS = R" in (2.31) and noting thaflf (x*) = 0, we
obtain:

vx e R f(x) > f(X).
That isx* is a global minimizer off. O



Example

e Continuing with the example from Sectio©8.1.1.2and10.1.3.2 note
that 0% is positive definite so thaft is convex.

e Therefore, by Corollaryt0.6 the pointx* = [:1,)] Is the global minimizer
of f.



10.1.4.2 Uniqueness of minimizer

Theorem 10.7Let f: R" — R be twice partially differentiable with
continuous second partial derivatives BA. If 04 is positive definite
throughoutR" and minycrn f(X) possesses a minimum then the
associated minimizer is unique.

Proof Applying Theorem2.3and2.2to f we find that there is at
most one point that satisfies the necessary conditions fanmzing f.
Alternatively, Theoren®.7 and Item(iii) of the conclusion of
Theorem2.4imply the same result



10.2 Approaches to finding minimizers
10.2.1 Steepest descent

KO ) _ q) 0 (<), (10.7)

10.2.1.1 Advantages

e Unlessf (xV)) = 0, it is always possible to find a step-sia€’) such that
the objective will be reduced frorﬁ(x(")) by updating the iterate to
X(V) — q(V) f (X(V))

10.2.1.2 Example
e Consider the quadratic function illustrated in Figa2



Example, continued

(2(x1—1
i) = _zg)x(i—s;]’
X0 — _g]
o) = |,2573)).

4
_ _—16 ’
x X(O)—I—CX(O)AX(O),
B 3 (0) -4

o If we seta(® = 0.5 thenx(t) = x* = [%] so that we would have reached

the minimizer in one iteration.



10.2.1.3 Disadvantages

e Progress towards the solution may be very slow if the cordets of the
function are very “eccentric.”

X2
// Fig. 10.8. Scaled ver-
7 sions of the steepest
descent step directions
T5 ) for an objective, defined
in (10.8, with contour
sets that are highly
eccentric ellipses. The
contours of the func-

tion decrease towards

X = which is

1
3 ]
X1 shown as a.



10.2.1.4 Example

e Figure10.8shows scaled versions of the steepest descent step di®ctio
for a quadratic functiorf : R> — R defined by:

YxeR% f(X) = (xg—1)%+ (x2—3)°—1.8(x1 — 1)(x2—3),(10.8)

1
= EXTQX—I— c'x+ constant

Q = 0%(x),
[ 2 -18
-8 2 |
. — [ 34
— |42

e This function has the same minimizet,= as the function in

1
3
Figurel10.2 but has eccentric contour sets.

e This function is more typical of functions encountered iagirce.



Example, continued
e For a step-size aiV), the next iterate has objective value:

f(xXVFTDY = £(xV) — a™) Of (xV))).
e Even if We choose( (V) at each iteration to minimize

f (x( ) —a )) exactlywith respect tax(V), it can take many
iterations to flnd the minimum of a quadratic function havewgentric

contour sets.
e The iterates will “zig-zag” back and forth across the axethefeccentric

contour sets, making slow progress towaxtls
e Non-quadratic functions with eccentric contour sets wihieit similarly

poor behavior using the steepest descent step direction.



Example, continued
e Using the function defined irl(Q.8), we obtain:

—1)—1.8(x;—3
vx € R2, Of (X) = [§§;§ 1.8&?1;]'

e Again, suppose that we ug&) = [ g] as the initial guess.
e Then:
1.

1o 1]~ 59

= 122532 183-1)| = | -196]|"

e and the steepest descent step direction®is Ax(© = [182] .



Example, continued
e We update according to:

1) _ 0) | 4O a0 _ | 3 ) | —184
X=X A —[5]+°‘ [ 196

e For the value ofi(9 that minimizesf (x© +a(©x9) over choices of
a(@, x() ~ _éﬁg% , which is relatively far from the minimizer of.
e Figurel10.9illustrates the progress of iterations using steepestudsc

step direction, starting at? = [_g] , and assuming that at theth

iteration the step-size") is chosen to minimize (x) + aAxV)).
e Figure10.9shows that after two iterations of steepest descent we are
close to the minimizer of this function.



Example, continued

Fig. 10.9. Progress

of iterations, shown
as o, using steepest
descent step directions
for an objective, defined
in (10.8, with contour

sets that are highly
eccentric ellipses. The
contours of the func-
tion decrease towards

.1 o
X' = 3] which is
shown as @. The initial

X1 guess wagl? = _g .




Example, continued

X2

5/ ‘ A Fig. 10.10. Progress

4 7 of iterations, shown
. as o, using steepest

descent step directions
for an objective, defined
: in (10.8, with contour

sets that are highly
eccentric ellipses. The
contours of the func-

-2} tion decrease towards
x = |3[, which is
-4p shown as &. The initial
T I S e e e ] guess wag? = —2



Example, continued

-5
illustrated in Figurel0.1Q requiring six steepest descent step directions
to get close to the minimizer.

¢ In higher dimensions, with larger than 2, the steepest descent algorithm
will repeatedly take us in directions that do not point dietowards the
minimizer.

e The steepest descent step direction can be arbitrarilg ¢tobeing at
right anglesto the direction that points towards the minimizer.

e Moreover, we cannot expect to exactly minimize“) + o™ axV)) over
choices of(V) as assumed in Figurd®.9and10.1Q

e This typically increases further the number of iteratioeguired to find a
useful answer,

e However, starting at(©) = the progress is much slower, as



10.2.1.5 Example with non-quadratic objective

¥xeR? f(x) = 0.01x (xg—1)*+0.01x (x2—3)*+ (xg — 1)%+ (%o — 3)?
—1.8(x1—1)(x2—3). (10.9)

Fig. 10.11. Scaled ver-
sions of the steepest
descent step directions
for an objective, defined
in (10.9, with contour

sets that are perturbed
eccentric ellipses. The
contours of the function
decrease towardg* =

% “which is shown as
% X o




Example with non-quadratic objective, continued

0.04(xy —1)3+2(xg — 1) — 1.8(x2 — 3)

2 _
vxe RS OHx = [0.04(X23)31~8(X11)+2(X23)

e Again, suppose that we ug&) = [_g as the initial guess.

o Then,Of (x%) = | 5 ng| @nd the steepest descent step directio®at
o [~1872
ST =1 4008/

e \We update according to:

() — (0 L qOp© — | 3| g0 71872
X=X+ aACY = [—5] t+a [ 40,08
e Figurel10.12shows the progress of a steepest descent algorithm assuming
that at thev-th iteration the step-size(¥) is chosen to minimize
f(xV) +aMaxV)),




Example with non-quadratic objective, continued

Fig. 10.12. Progress

of iterations, shown
as o, using steepest
descent step directions
for an objective, defined
in (10.9, with contour

sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

.1 o
X = 3,WhICh IS

b

shown as @. The initial
3

2 4 3 -2 -1 0 1 2 4

X1 guess wag? =



Example with non-quadratic objective, continued
e Figure10.13shows the progress of a steepest descent algorithm starting

atx9 = again with the step-size chosen to minimize

—2

-5
f(xV) + aV)ax(V)) at each iteration.

e The iterates again zig-zag back and forth across the axiseafdntour
sets and many iterations are required to approach the naeimi



Example with non-quadratic objective, continued

X2

Fig. 10.13. Progress

of iterations, shown
as o, using steepest
descent step directions
for an objective, defined
in (10.9, with contour

sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

.1 o
X* = 3,whlch IS

: A % shown as a(.) The |n|2t|]al

25 4 -3 -1 T 2 3 4 5 X1 guess Wax( ) —




10.2.2 Solvinglf(x) =0

e Another approach to minimizing is based on the observation that
[f (x) = 0is a system of either linear or non-linear equations hawveg t
same number of equations as variables.

10.2.2.1 Linear first-order necessary conditions
Analysis

e Suppose thaf : R" — R is quadratic of the form:
n 1 T T
vxeR" f(x) = éx QX+ C'X,
e In this case, the equationd (x) = 0 are linear and of the form

Qx+c=0.
e \We can solve the equations:

QX = —c.



Example
YXxeR?% f(X) = (x¢—1)%+ (x2—3)2—1.8(x1 —1)(x2 — 3),

1
= EXTQX—F c'x+ constant

Q = I (x),
| 2 -18
- |-18 2 ]
. [ 3.4]
— |42

e SolvingQx* = —c we obtain the minimizex* = [%] :



10.2.2.2 Non-linear first-order necessary conditions
Analysis

e Apply the Newton—Raphson update to solvix) = 0.

0% (xXV)XV) = —0Of (xV)),
XD = V) ).

e The choice of step is called tidMewton—Raphson step directiorto
minimize f.



Example with quadratic objective

e For a quadratic function, the necessary conditions araitine

e Nevertheless, we can consider applying the Newton—Rapinsdate to
solve them as though they were non-lineatr.

e For a quadratic functiori : R" — R defined by:

1
vxe R", f(x) = EXTQX—I— c'x,

e whereQ € R™" andc € R", the Newton—Raphson step direction is the
solution toQAXY) = —QxXY) —c.

e Using this update with step-size one yields a point satigfyine
first-order necessary conditions for minimizimfg

e Figurel10.14shows scaled versions of the Newton—Raphson step
directions for the function1(0.8) at various points.

e They all point towards the minimized = [%] :



Example with quadratic objective, continued

Fig. 10.14. Scaled ver-
sions of the Newton—
Raphson step directions
for an objective, defined
in (10.8, with contour

sets that are highly ec-
centric ellipses. The
contours of the function
decrease towardg* =

%] . which is shown as

2 X o’



Example with non-quadratic objective
YxeR? f(x) = 0.01(x; —1)*+0.01(xo — 3)* + (xg — 1)? + (%o — 3)?
— 1.8(X1 — 1) (X2 — 3),
5 (012 —1)2+2 -1.8
XERLOH() = [ ~18 0120 —3)2+2|

e Again, suppose that we ug&) = [_g] as the initial guess.

e The Newton—Raphson step directiorx&! is the solution to:

248 —18] 0 _ [-1872
—~1.8 968 ~ | 4008
o) [ —5.250)]

AT~ | 3164




Example with non-quadratic objective, continued
e \We update according to:

XD = x(0 4 (O ax(0) — [_3] 1 qO [—5.250]

5 3.164|"
i (0) _ (1) _ | —2.250
e For step-size&™” = 1, we obtainX'™ = | _ ;'gaq.
e Figurel10.15shows the progress of a Newton—Raphson algorithm starting

at X(O) = [

were chosen to minimiz&(x") 4+ aAx\)).

g] and assuming that at thveth iteration the step-siza(V)



Example with non-quadratic objective, continued

X2

’ ‘ T Fig. 10.15. Progress of

4 ' iterations, shown as,

5 . | using Newton—Raphson
step directions for

’ | an objective, defined

1 ' in (10.9, with contour

. ) sets that are perturbed

eccentric ellipses. The
contours of the func-
tion decrease towards

.11 . .
X = 3] which is

shown as @. The initial
X o _ | 3
1 guess wag'” = .

5 =

-5 -4 -3 -2 -1 0 1 2 3

I



Example with non-quadratic objective, continued
e Figurel10.16shows the progress of a Newton—Raphson algorithm starting

:FZ) , again with the step-size chosen to minimize
f (x) +aVaxV)) at each iteration.

e The progress is much faster than for the steepest descprtistetion for
the same value of initial guess.

at X(O) =



Example with non-quadratic objective, continued

5

X2

2

3

4

5

X1

Fig. 10.16. Progress of
iterations, shown as,

using Newton—Raphson
step directions for
an objective, defined
in (10.9, with contour

sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

X* = which is

1
3 ]
shown as @. The initial
-2

guess wag® = | c|.



10.2.2.3 Advantages

e Convergence to the solution off (x) = 0 will be rapid, at least for initial
guesses that are near to a solution of the equations or é&etate
becomes close to a solution of the equations.

e If f is quadratic then, as discussed in Sectior.2.2 the
Newton—Raphson step direction with step-siz€ = 1 takes us to a
critical point in just one iteration.

e SinceJ%f (x) is symmetric, we can take advantage of symmetry in
factorization.



10.2.2.4 Disadvantages

e For non-quadratic objectives and particularly at poing dre far from
the minimizer, the Newton—Raphson step direction is noesgarily a
better direction than the steepest descent step direction.

e Factorization of the Hessian may require considerablataffa is large
or the Hessian is dense.

o If Of (xV)) is not known analytically then it may be difficult or imposiib
to directly calculated?f (x(V)).

o If 0% (x<")) IS not positive definite, then the Newton—Raphson update
may take us towards a maximum or a point of inflection.



10.2.3 Generalization of Newton—Raphson and steepestel@sc

e In this section we generalize the Newton—Raphson and stedpscent
updates in a way that can combine the advantages of eachaappro

10.2.3.1 Uniform treatment of updates

MV = —M Of (xV), (10.10)

e with M € R™" positive definite as in Corollar¥0.2to guarantee descent.
e M =1 yields the steepest descent step direction.

o M = [02%F (x"))] " (if the Hessiari1% is positive definite) yields the
Newton—Raphson step direction.



10.2.3.2 Modified update
e To calculate™xV) satisfying (L0.10, we would solve the linear system:

0% (X" xV) = —Of (xV)). (10.11)

e Suppose that at theth stage of the factorization there are no positive
diagonal pivots available.

e By Lemmab5.4, this means thaf?f (xV)) is not positive definite, so that
the Newton—Raphson step direction, even if it is defined, nwdye a
descent direction. _

e Let us modify the factorization by adding a positive quanif; to AE}) to
make the pivot positive, wher)) is the matrix obtained at thith stage
of the factorization of1%f (x(V)).



Modified update, continued
e Adding Ej; to AE}) Is equivalent to adding the matrix:

E= Eij (10.12)

o to 1% (X(V)).

e By construction/ 3% (x")) 4 E is symmetric and positive definite.

o Its inverseM = [0% (X)) + E] " exists and is also symmetric and
positive definite.

e By Corollary10.2 the search direction defined bi0(10 using thisM is

a descent direction.
e This is called anodified factorization.



10.2.3.3 Further variations
e \We have considerable flexibility to either:

(i) construct positive definite approximations|fosf (x)]_l, or
(i) approximately solve the equation:

0% (X) M = —Of (),

e in a way that guarantees that for the resulilixgve have that
M = —MOf (x) for some positive definit®.



10.2.4 Step-size
10.2.4.1 Need for step-size selection

Fig. 10.17. The need
for a step-size rule. The
function f is illustrated
with a solid line to-
gether with a quadratic
approximation to i,
illustrated as a dashed
line. The quadratic
approximation is a
second-order Taylor
T e o5 or o5 os o7 ws o5 1 X approximation of f
x) x(V+1) X aboutx¥) = 0.3.




Need for step-size selection, continued

e Suppose that we use the Newton—Raphson step direction tminanthe
function shown in Figurd0.17 starting ax(¥) = 0.3.

0% (xXV)xV) = —0Of (xV)),
MV = 05.

e For this choicex = x() + AxV) = 0.8 minimizes the quadratic
approximation tof.
e However:

f(x) = f(xV4+axM)),
> f(xV).

e A step-size ofi(Y) = 1 would lead to ancreasein the objective.



10.2.4.2 Armijo step-size rule

e Suppose that we had chosefY) that is small enough so thétis

accurately represented bysacond-order Taylor approximation about
x(V).

e Then:

f(xV) +a™ V)
~ f (X(V)) +aV Of (X(V))] MV %(G(V))Z[AX(V)]T (1% (x(V))Ax(V),

by a second-order Taylor approximation

~ £V 1 o) [0f ()] XY — a2

2
assuming thatx“) approximately solveg)%f (X)) = —0f (x(V)),

_ i) o (1_%0(@)) of ey

f(x) 4 5o [0F ()]

T

"o (),

N

"), (10.13)



Armijo step-size rule, continued
e In practice, the reduction may not be as small as predictdd®y.3 and
we may have to accept a smaller reduction.
e \We choose an acceptance tolerance ®< 1.
e We start with tentative step-sizé¥) = 1 and calculate the trial objective
f(xV) +aMaxV)),
e The step-size is accepted if:

T

F(xXY) £ aWax¥)y < £ (xV) + Oa) [OF (xV))] V), (10.14)

2

e Otherwise, reduce the step-size by a factor of, say, oneahdlfepeat the
process until an iterate is produced that satisfi€si4).



10.2.4.3 Wolfe condition
e The rule for reducing the step-size discussed in the lasiosedoes not
check for “improvement” in the gradientf.
e An alternative that makes use of gradient information nathan
objective values is provided by tiWolfe condition:

0F (X 1 a7 ) gn‘[Df(x("))]TAXW) . (10.15)

e The Wolfe condition ensures that tdeectional deriva;ive in the
direction/) evaluated at the next iterafg]f (x(V+1))] AxV), is small
compared to the directional derivative in the directiof?) at the current

iterate,[0f (x¥)] &x(¥).



10.2.4.4 Combined Armijo and Wolfe conditions

e The Wolfe condition £0.19 is often used in conjunction with the Armijo
condition (L0.14.

e The Armijo condition (0.14 ensures that the step-size is not so large as
to invalidate the quadratic approximation of the objective

e The Wolfe condition £0.19 ensures that the gradient of the objective is
reduced sufficiently by the step.



10.2.4.5 Curve fitting

e If f is relatively easy to evaluate, then we can evaluate it araépoints
along the linex") + ax) for 0 < a < 1 and then fit a polynomial curve.

¢ \We can minimize a quadratic function efusing the following:

(i) If the coefficient of(a)? in the quadratic function is positive, then
the minimum of the function occurs at the poit) + axY) for a
such that the derivative of the quadratic function with exgpgoa is
equal to zero. If this value af lies outside the rang®, 1| then the
closest end-point should be selected.

(ii) If the coefficient of(a)? in the quadratic function is negative, then
the minimizer is one of the end-poinis= 0 ora = 1.

10.2.4.6 Trust region

e In atrust region approach the selection of an appropriate search
direction and step-size both explicitly consider the ragiwer which a
second-order Taylor approximation represents the fundtiaccurately.



10.2.5 Stopping criteria

e A typical criterion is to require thz#Df(x(V)) ’ andHAx(V) be

sufficiently small.
e By Theorem2.6, if f is convex then any minimize¢ of f(x) must
satisfy:

() 4 [OF ()] (¢ = x¥),
F(x¥)) — |[DF (V)] (¢ —x))
F(x)) - HDf(x<V>) ]

e If we know ana priori bound on the minimizer, then we can bound
x* —xV) || independently ok* by somep.

f(x")

AVARRAY,

9

. (10.16)

x* — xV)

'V

e We can ensure thdt(x()) is within £ of the value of the global
minimum by iterating untiIHDf(x(V)) ‘ <&t /p.




Stopping criteria, continued

e The stopping criterion is often implemented in practice abghntly
differentrelative criterion by testing if:

o ()| < %f (1+11))).




10.2.6 Avoiding critical points that are not minimizers

e If, at some iteratiow, we find thatJf (x()) = 0 then our basic algorithm
cannot make further progress.

e If fis convex, then by Corollar0.6 x¥) is a minimizer andf (xV)) is a
minimum.

e If f is not convex, then we may be at a point of inflection or a local
maximizer.



Avoiding critical points that are not minimizers, continwke

e In Figure10.18 the iteratexV) = 0.5 is a horizontal inflection point of the
objective.

f

0.65-

0.6

0.55-

0.5

0.45-

0.4

Fig. 10.18. Iterate that

is a horizontal inflection

T or o e o5 o5 o7 o5 s 1 & point of the objective
x(v-1 xV) function.

0.35




Avoiding critical points that are not minimizers, continwke

e If the first-order necessary conditions are satisfied, butavedetect that
the current iterate is not a minimizer, then we can restaratgorithm by
perturbingx¥) by a random amount to move it away from the point of
inflection or local maximum.

e Alternatively, at a horizontal inflection, we can use thevpes iterate in
a secant approximation as discussed in Sedti@rl.5 to seek a descent
direction.

e For example, in Figur&0.18 using a secant approximation based on
x(V=1 andx¥) would yield a descent direction.

e If we are not at a horizontal inflection point then anotherrapph is to
look for negative eigenvalues of the Hessian and move initieettbn of
the corresponding eigenvector.



10.3 Sensitivity
e Suppose that the objectivieis parameterizedyy a parametey € RS,
Thatis,f : R"x RS — R.
¢ \We imagine that we have solved the unconstrained mininoizgdroblem:
min f(x;X),

xeRN
e for a base-case value of the parametersxsay0, to find the base-case
minimizerx*.
e \We now consider the sensitivity of the minimizer and minimtam
variation of the parameters arougd-= 0.



10.3.1 Implicit function theorem

Corollary 10.8 Let f: R"x R® — R be twice partially differentiable with
continuous second partial derivatives. Consider the miaton
problem:

min f(x; %),

min f(xX)
wherex € R%is a parameter. Suppose thatis a local minimizer of this
problem for the base-case value of the paramegets0. We call x= x*
a base-case minimizer. Define the (parameterized) Hessian
O2f : R"x RS — R™" py:
n S M2 . aZf .
vx e RY VX € R% Uod (X X) = 552 (06 X)-

Suppose thail f (x*;0) is positive definite, so that satisfies the
second-order sufficient conditions for the base-case prabiThen, there
is a local minimizer of {x;x) for x in a neighborhood of the base-case
values of the parameteps= 0 and the local minimizer is a partially
differentiable function of in this neighborhood. The sensitivity of the



local minimizer X with respect to variation of the paramete(s
evaluated at the base-cage= 0, is given by:

aX* * . -1 o
3 (0) = —[5f (<10 K (x50),
where K: R" x RS — R"% s defined by:

92 f
n S
VX ERT VX € REKOGX) = gy (% X):

The sensitivity of the corresponding local minimuftd variation of the
parameters, evaluated at the base-cage-= 0, is given by:

of* of
ax % =ax!

If f (e;X) is convex for eacly in a neighborhood o then the minimizers
and minima are global in this neighborhood.

*O)



Proof The sensitivity of the local minimizer follows from

Corollary 7.5, noting that by assumption the Hessian is positive definite
in a neighborhood of the base-case minimizer and parameters

The sensitivity of the local minimum follows by totally defentiating

the value of the local minimun*(x) = f(x*(x);X) with respect t. In
particular,

of~* df(x*(x);
5(0) = dx( X)X (),
af af ox*
on totaIIy differentiatingf (x*(X); X) with respect tg,
of
since the first-order necessary conditions at the baseatase
of
X (x;0) =0.

The global results follow from Corollar{0.6 O



Discussion

e If 02f(x*;0) has already been factorized then each sensitivity ofith
respect to an entry of requires only a forwards and backwards
substitution.

e The sensitivity of the local minimum is calléde envelope theorem



10.3.2 Example
e Consider the parameterized objective functforR? x R — R defined by:

Vx e R2¥X € R, f(x;X) = (x1 —exp(X))?+ (x2 — 3exp(X))% + 5X.

e This is a parameterized version of the function defined.inl).
e Forx = 0, the parameterized function is the same as the functionetgfi
in (10.1) and from the discussion in Sectidf.1.1.2we know that the

) . ) 1
base-case unconstrained minimizextis= 3

e By Corollary10.8 there is a minimizer of (e;x) for x in a neighborhood
of the base-case value of the paramgter O and the minimizer is a
differentiable function ok in this neighborhood.

e The sensitivity of the minimizex* with respect to variation of the
parametel, evaluated at the base-case- 0, is given by:

ox*

gy (0) = —[0&T (<5 0)] K (x:0),



Example, continued
e where13f : R? x R — R?*? andK : R? x R — R?*! are defined by:

vxe R2Vx e R, 02f(xX) = a—z(X;X),

X
2 0]
- _O 2_ ’
N 2 0]
D)?xf(x 0) = 0 2|
vx e R%¥x e R,K(xX) = az—f(X'x)
’ P oxox "N’
[ —2expx)
[ Bexpx) |
* __2
K(X ,O) — —6] )

e where we observe that’f (x*;0) is positive definite.



Example, continued

e The sensitivity of the minimizex* to variation of the parametey,
evaluated at the base-case- 0, is:

$C0) = ~[C280¢30) K(x0),

-[53 [4]
_n



Example, continued
e The sensitivity of the minimuni* to variation of the paramete,
evaluated at the base-cagse- 0, is given by:
of* of
oy (0 =5y (x50).
¢ \We have that:
of
ax % X) = 2(x —exp(x))(— exp(x)) + 2(xz — 3exp(X)) (—3expX)) +5

e and so the sensitivity is:

of* . of

W(O) _W(X*;O) =5.



10.4 Summary

e Descent directions,

e Optimality conditions,
e Algorithms,

e Sensitivity analysis.



11

Solution of the unconstrained minimization case
studies

e Multi-variate linear regression case study in Secfidrl, and
e Power system state estimation case study in Sedtloh



11.1 Multi-variate linear regression
11.1.1 Transformation of objective
e Recall ProblemY.7):

max@(¢(1),...,¢(m);w(d),..., w(m), x),
e where@: R" — R was defined in4.6), which we repeat here:
vxe R Q(Z(1),....¢(M);w(1),...,p(m),X)

L (WO B+y—1(0)?
- ﬂmofxp<‘ 20,2 )

e First definef : R" — R by:
vxe R, f(x) = —In(@(Z(1),....2(M); Y(1),...,p(m),X)).




Transformation of objective, continued
e Then:

~ m T . 2
WERM F0 = —In (ﬂ&oﬁx%_w} %Z)Zzw)) ))
_ < 1\ (WO B+y—()?
3 lln<\/ﬁw) 202 ]

D wOBry-q)?| o 1
‘/21[ 20,7 ]‘/21'”<¢ﬁo)’

e Where we recall that:

X = [5] e R".



Transformation of objective, continued
e Assuming that, = o,V/ =1,...,m, we can defind : R" — R by:

f(x) +§1In (\/%Tﬁz)] ,

vxeR" f(x) = o?

12 1 2
= 2> WOB+y-2(0)?
=1
1 m
- 7 (Afx_b€)27
24
whereA, = [p(¢)" 1] e R¥Mandb, =(¢) € R,
— %(Ax—b)T(Ax—b),
Aq bl
whereA=| : | eR™"andb=| : | e RM
Am bm
1 2
— SllAx=bl3.



Transformation of objective, continued
e By Theorem3.1, so long as either:
(i) Problem ©.7) has a maximum or
(ii) the problem:
min f(X), (11.1)

xeRN

has a minimum,

e then they both have the same set of optimizers.

e Problem (1.]) involves minimizing (half of) the sum of squares of linear
functions ofx and is called dinear least-squares problem

e We refer to the corresponding specification of the affine tionadefined
in (9.1) as aleast-squares fitto the data.

e The necessary conditions for a minimum of Probldrh.{) are a set of
linear simultaneous equations.



11.1.2 Comparison of objectives

e The necessary conditions for a minimum of Probldrh.{) are a set of
linear simultaneous equations.

¢ In contrast, the necessary conditions for a maximum of [Brolf.7) are
a set of non-linear simultaneous equations sipsenon-quadratic.

11.1.3 Derivatives of objective

vxeR",0f(x) = AT(Ax—b), (11.2)
vxe R", 0% (x) = ATA (11.3)



11.1.4 Optimality conditions
e 0% (x) is positive semi-definite.
e Therefore the objectivé is convex.
e First-order conditions are sufficient.
e Solving either Problem1(1.1) or Problem 9.7) yields the same set of
minimizers.

*
e In summary, by solvingJf (x) = 0 for x* = [5*] we will find a

maximizer of Problemd.7).
e Settinglf (x) = 0 and re-arranging, we obtain:

ax— B, (11.4)
e where4 = ATA and 3 = A'h.



11.1.5 Further transformation

e The condition number oA’A can be large.
e Instead of calculating and factorizifg A, we QRfactorizeA itself to
obtain (ignoring any permutations of the rows or columng)f

A=QR

e with Q € R™M ynitary,R= [%] e R™M upper triangular, with

U € R™" upper triangular and is non-singular ifA has linearly
independent columns.

e \We have:
xe R f(x) = %(AX— b)T(Ax—b),
_ %(XTAT —b')(Ax—b),
_ %(XTRTQT _ b")(QRx-b), by definition of QR



Further transformation, continued

— %(XTRTQT —b'"QQ" (QRx—QQ'h), sinceQ s unitary,
1

— E(xTRJr —~b'Q)Q'Q(Rx— Q'b), on factorizing

- %(XTRT —b'Q)(Rx—Q'b), becaus® is unitary,

(T ) o) e 3]

2
x—Q'b

9

2

'] _al oL
X — , whereQ = [Ql Q']
[[QHT )

with Q|| c Rmxn’7 QL c Rmx(m—n’)7

NIl NI

b
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Further transformation, continued

2

9

2

Ux—[Ql'b
ox—[Q*]'b

NIl NI

Ux— [Q”]TbHiJr % H [QL]Tb‘ z, by definition of thel, norm.

e Geometrically, we have resolved the vecfor— b into the sum of two
vectors:
Ux— [Ql]"b, which depends or, and
OX — [QL]Tb — —[QL]Tb, which does not depend on

e The columng)! are such thaiQ!]'b “aligns” with Ux.

e The columngQ+ are such that— [QL]Tb) is perpendicular tt x.
e If U is non-singular then the first-order necessary conditions f

minimizing HUX— [Q”]TbHE areUx = [Ql]"b.




Further transformation, continued

Ux —[QI'b
Fig. 11.1. Resolution
Ux’—[QN'b  of the vector Ax— b
into two perpendicular
vectors for the values
x=X andx = Xx".




Further transformation, continued
e \We can obtain the solution to Probledil(]) by:

: T
— evaluatingy* = [Ql] b, and
— performing a backwards substitution to solyg” = y*.

*
e The solutionx* = 5* specifies the maximum likelihood estimate of the

relationship between the independent and dependent iesiab

vpe R =B w4y



11.1.6 Relationship of optimality conditions to linear regssion

e In designing the values df(¢) for the trials, there are two related issues
to be addressed:

(i) Providing enough variety in the trials to ensure thét = ATAis
positive definite. We discuss this issue in Sectibhdl.6.1
and11.1.6.2

(i) Providing enough redundancy so that the effects of meament
error can be “averaged out.” We discuss this briefly in
Section11.1.6.3



11.1.6.1 Insufficient variety in the trials

e If 0% (x) is singular then there will be many possible values of the
parameters that satisfy the maximum likelihood criterion in the
model 0.1), based on the data from triads=1,...,m.

11.1.6.2 Sufficient variety in the trials
e On the other hand, if there is arelement subsei(s, ¢o, ..., ¢y} of the
trials {1,..., m} such that the rows of A corresponding to these trials are
linearly independent, thei’f (x) = ATA is non-singular.

11.1.6.3 Redundancy and validation of model

e We may want to find not only the maximum likelihood estimatot &lso
estimate the variance of the error.

e In general, it requires tham be larger, and typically considerably larger,
thann.



11.1.7 Changes in the problem
11.1.7.1 Additional trials

e If additional trials are added then there will be additiorals added t&\
and additional entries addedlpnecessitating factorization of the
augmentedh.



11.1.7.2 Sensitivity

e We consider the sensitivity of the coefficiefifsandy* to changes in the
measurements.

e Thatis, for eaclf = 1,...,m, we will imagine that the-th measurement
is actuallyl(¢) + X, with x € R™.

e We calculate the sensitivity @ andy* to X, evaluated ax = 0.

e By Corollary10.8 the sensitivity of the minimizex* is given by:

ox* e 1L /.
W(O) = —[O5f (X 0)] "K(x*;0),
e where13f : R" x R™ — R™" andK : R" x R™ — R™M are defined by:
02 f
Yxe R vx € R™ O2f(xX) = 52 (6 X);
= ATA
VX e R VX € R K(x;X) = az—f(X'X)
) ’ ’ oxox '’
— —A"



Sensitivity, continued

e That is, the sensitivity tq, is given by[ATA] “A'l,, wherel, € R™is a
vector with zeros in all places except théh place, which is a one.

e This is the same as the solution of a regression problem #thtHe same
values of independent variables as in the base-case, bue Wieevector
of measurements was changed frono I ,.

e Using the analysis in Sectidiil.1.5 we can calculate the sensitivity %@

by:

_ evaluatingy = [Q!]"1,, and
23

— performing a backwards substitution to solwg;((— (0) =vy.



11.2 Power system state estimation
11.2.1 Transformation of objective

e \We use a similar transformation to the one in Secfidri
e \We define:

~ 1
VXeR" f(x) = —Ing(G;x)+ § In , 11.5
(x) WG+ 5 Iy (L)
5 (N2
\V/XERn,f(X) — (gg(X) ZGK) :
(eM 207
1 . ~t oo, ~
= 560 -6)[T*(@Ex-C).  (11.6)
e Where:
> ¢ RM>*M s the diagonal matrix witli-th diagonal entry equal to
Gg,g € M,

§: R" — RM is the vector of all measurement functions, and
G € RM is the vector of all measurements.



Transformation of objective, continued
e The transformed problem is:
min f(x). (11.7)

XeRN

e \We have a least-squares problem since the objective is th@taquares
of terms. _

e Since each termig(x) — G) is non-linear, we classify Problem1.7) as a
non-linear least-squares problem



11.2.2 Derivatives of objective
vx e R" Of (x) = (X)T[Z] _Z(Q(X -G),
= S DG:00[Z] 2(G(x) - Go), (11.8)

=230+ S O%e(X)[Z] 2(Ge(x) — Go),

(11.9)

e whereJ is the Jacobian af &nd1g, is the transpose of thieth row of J.

vx e R" 0% (x) = J(x)



11.2.3 Optimality conditions and algorithms
11.2.3.1 Qualitative comparison between Proble8)(and 11.7)

e The first-order necessary conditions for Problés), Op(G; x) = 0, are
non-linear.

e The first-order necessary conditions for Probldrh.Q), Uf (x) = 0, are
also non-linear.

e Consider the measurement functions in detail:

(i) Each voltage magnitude measurement functiQx)= u, is
linear.

(i) The real and reactive injection measurement functiemg the real
and reactive flow measurement functions @peroximatehinear.
This observation and the expression ffdr, (11.8), mean that the
necessary conditions for Probledil(7), [If (x) = O, are also
approximately linear.

e The transformationl(1.5 transforms a non-linear objective into an
approximatelyguadratic objective.



Qualitative comparison between Probler8s3j and (11.7), continued

e The necessary conditions for minimizing Problet.() are
approximatelfinear.

e \We use the hypotheses of the chord and Kantorovich theor@ms t
qualitativelycompare the convergence properties of the Newton—Raphson
update applied to:

— Problem 0.8); that is,[kp(x) = 0, and
— Problem (1.7); that is,[Jf (x) = 0.

e Sincellf is approximately linear, then?f is approximately constant and
a Lipschitz constant can be found faff that is smaller than a Lipschitz
constant forJ4p.

e We expect the radp_, p., andp defined in Theoremg&.3and7.4to be
larger for the problem of solvinglf (x) = 0 than for the problem of
solving kp(x) = 0.

e That is, we can expect to converge to a solution from a poartali
guess if we apply the chord or Newton—Raphson methods te solv
0f (x) = Oinstead of applying it to solvekp(x) = 0.



11.2.3.2 Problemi(1.7)
Hessian

e The Hessiarl%f from (11.9 consists of the sum of two terms:

() Jx)[=]723(x), which is of the formATA for A= [=]13(x) and so
the matrixJ( )T[Z] 2J(x), is positive semi-definite, and

(i) S senn 0%G0(X) 2(§e(x) — G,), which can turn out to be not
positive seml deflnlte

Search direction
e Recall that in defining a search direction, we found that
V) = —MOf (xV)) is a descent direction M is positive definite.

o We know thati(x)[=] 23(x) is positive semi-definite, but we do not
know if the Hessian is positive semi-definite.

e Instead of using the exact Newton—Raphson update, we appated4f
by its first term:

J0) =230, (11.10)



Search direction, continued
e \We solve for the approximate update direction:

=272V = —DOf (xV),
= T A6 - g™, (11.11)
e This approximation is called th@auss—Newton method.
o We must still consider the possibility thtx)) [5]25(x¥)) is not
positive definite.
e We can follow the approach discussed in Secfior.3.2and add terms

to the diagonal of the matrix during factorization to ensinag the
modified matrix is positive definite.



Search direction by solving a related linear least-squareproblem

e The use of {1.1]) to calculate a search direction suffers from a similar
drawback to the solution ofL(.4) in the linear case.

e By definingA = [2] *J(xV)) andb = [£] (& — §(x))), note that {1.1])
is equivalent taATAAX(Y) = ATb, which is the same form as the optimality
condition for the multi-variate linear regression problem

e We can therefore findx() by noting that™(") is the solution to the
linear least-squares problem:

1 5
= ||AMX —Db||5. 11.12
min S 12 (11.12)



Levenberg—Marquardt

e An alternative approach is to approximate the possibly oettjye
semi-definite terny ycpr 07, (X)[Z4] ~2(gs(x) — G;) by the positive
definite matrixAl, whereA > 0 is chosen to be large enough to make the
resulting approximation of the Hessian positive definite.

e This is called the_evenberg—Marquardt method. and is related to the
trust region approach mentioned in Sectidh2.4

Further approximation

e We can further approximateusing the using the fast-decoupled or other
approximations to the Jacobian of the power flow equaticns) the
discussion of the solution of the power flow equations in i5e@.2.4.2



11.2.4 Placement of meters in the system
11.2.4.1 Insufficient variety in the measurements

u Y.

~ ~ 12
P12, Q12
Y13 Yos3
1B,. 0 3 2
13, Q13
P1,Q1,Us Fig. 11.2. The three-
bus power system
<’\> state estimation prob-
neutral lem, repeated from

Figure9.2



Insufficient variety in the measurements, continued
e If the measurements are not spread out throughout the systédiere

is a measurement failure, thétx)'[2] 23(x) can be singular.

e For example, consider the system in Fig@rg which is repeated in
Figurell.2

e The are five unknown variablesi, 62, Uy, 83, andus.

e There are seven measuremerﬁﬁsQl,Ul, Plz, le, P13, andQ13

e However, since:

P1(X) = Pr2(X) + P13(X),
Gu(X) = Gaa(X) + Gra(x),
e there is redundant information concerning bus 1.
e This would enable us to estimate the voltage magnitude ang éoound
node 1, even in the presence of measurement errors.

e There is just enough information to estimate all the voltage flows in
the system.



Insufficient variety in the measurements, continued

e Suppose that there is a failure of the voltage measureméime isystem
in Figurell.2

e In this case, there will be many sets of voltages and ar@lés,|, 63, and
lv3| that are consistent with maximizing the likelihood of thesetved
measurements.

e \We say that the systemimobservable

e If we aredesigninga measurement system, then singularity of

J~(X)T[Z] ~2J(x) for a candidate meter placement plan suggests that we
should add more meters to the plan.
e If we areoperatinga measurement system and we find that because of,

for example, meter failures, the matrf(o<)T[Z] ~2J(x) is singular, then we
cannot estimate the state completely.

e In practice, in the latter case, the user of the softwarellyssecifies
pseudo-measurementghat is, guesses at what the actual measurement
would be, based on experience, so that a rough estimate obthplete
state can be found.



11.2.4.2 Sufficient variety in the measurements

—— Yiz |
P12, Q12
1? [Yi3 3 [ Yo3 51
m P, QU P;,Q3 P5,Q2,Uzxm
neutral

Fig. 11.3. The three-
bus power system state

estimation problem
with spread out mea-
surements repeated

from Figure9.3.



Sufficient variety in the measurements, continued
e Usually, if there is sufficient variety in the measuremetits,positive

semi-definite matrixi(x)'[£] 23(x) will turn out to be positive definite for
almost all, if not all values o%, and hence be non-singular.

e If it is non-singular then the approximate update equatidnl(l) has a
unique solution.

e For example, for the arrangement in FigQr8, which is repeated in
Figure11.3 for almost all values of there is a five element subset of the
rows of J(x) that is linearly independent, so thix)'[] 2J(x) is
non-singular.

e This remains true even in the presence of a single failurevoftage
measurement.

11.2.4.3 Sensitivity

e \We can consider variation of the estimate with variatiorhm t
measurement data.
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