Stochastic Interest Rates
Daragh Mclnerney and Tomasz Zastawniak

Solutions to Exercises

Chapter 1
1.1. Using (1.2) and (1.3) we can express R(¢, T) in terms of L(t, T') to get

In(1 + (T —0)L(t, T))
T-t ’

For L(0, 1) = 5% we find that R(0, 1) = 4.88%.
1.2. The present value of all the payments is given by the geometric series

W = 1
2 BOm =) A+ 7

n=1 n=1

R4, T) =

where we have used the formula 32, x" = ;= for the sum of a
geometric series when |x| < 1. For r = 5% the present value of the
perpetual bond is $20.

1.3. Using definitions (1.6) and (1.2) we can write

F(0:S,T) =

I (1+TLO.T)
T-S\1+SL0,S)

Solving for L(0, S), we get 4.86%.

1.4. Using the formula for the forward rate in Exercise 1.3, we get F(0; 1,2) =
5.769%.

1.5. Using the formula

R, TYT —1t)—R(t,S)S —1)
T-S '

forr=0,S =1and T = 2, we find that R(0,2) = 4.75%.
1.6. Equating formulae (1.3) and (1.11), we can see that

R(t;S,T) =

T
f ft,wydu = (T — R, T).
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1.7.

1.8.

1.9.

Solutions to Exercises

Differentiating both sides with respect to 7" shows that
f@&,T)=RtT)+ (T - t)aiTR(t’ 7).
The floating coupons
Co=N(T;—Ti-)) LT, Ti-1)

were paid at times 7; for i = 1,...,6. In addition, the notional
amount N was paid at time Ts. As a result, the cash flow of the
floating-coupon bond was

i T; C;

1 Feb 2010 0.039 60
1 Mar 2010 0.039 84
1 Apr 2010 0.045 86
4 May 2010 0.049 50
1 Jun 2010 0.04255
1Jul 2010  100.046 52

(o S R S A

Use formula (1.15) along with the data provided to get

B(0,1) - B(0,3) _
s

Z 0.5B(0, 0.5i)
i=3

§13(0) = 5%.

Using formula (1.15) we can write

1-B(,T))

S01(0) = ,
O = Tho.T
for the case i = 1. Re-arranging we get

B0O,T) = ——.
©.12) 71801(0) + 1

We now proceed by induction. For the case i = j assume we can

write B(0, T;) in terms of the co-initial swap rates fori = 1,..., j.

Using formula (1.15) we have

1 -B(0,T;)
S01(0) = —————,

> B, T)

i=1



Solutions to Exercises 3

for the case i = j + 1. Re-arranging we get

-1

J
B(O,Tji1) = | S01(0) Y w:BO, T)) + 1

i=1

1.10. Using the bootstrapping formula (1.18), we see that

B(To, Tl) = = 0.99631.

1+ T
Having solved for B(Ty, T,), we can write

—n1B(Ty, Ty)

1
B(To, T>) = T+ 1rs

= 0.98898.

Repeating, we get B(Ty, T3) = 0.97720, B(Ty, T,) = 0.96135 and
B(Ty, Ts) = 0.94198.

Chapter 2

2.1. Let V(z) be the price process of the derivative security. At the exercise
time it is equal to the payoff, V(T) = X. Moreover, just like for

any other security, the price process % discounted by the money
market account is a martingale under the risk-neutral measure Q; see
Assumption 2.1. It follows by Proposition 2.2 that % is a martingale

under P, for any choice of numeraire A(¢). We can conclude that
V() V(T) X

Y _E Fl =B, | ——|F

PA( ' Pl 3 o’

A@r) A(T)
for each ¢ such that 0 < ¢ < T. This implies, in particular, that

X
V(0) = A(O)Ep, (m) .

2.2. First observe that ZTI?; iS Fminis,rj-measurable since Pg is a measure
defined on F5 and Py on ¥7. Now consider the case when § < T.

For any A € Fs we have

dP 1
PsA)=Fe (lAd_QS) = Fe (IA B(S)B(O S))'



4 Solutions to Exercises
On the other hand,

dPs dPg dPr dPs 1
Ps(A) =B, (lAdP ) . (1 dpP; dQ) 8 (“EB(T)B(OJ)
(1 dPs _ B(TI,T) )_ (1 dPg ( B(T,T) ?))
AdP; B(T)B(O,T)) apr; 2\ B(T)BO,T)|” *

( dPs B(S,T) )
AEB(S)B(O,T) ‘

B@,T)

This is because 1, and are Fg-measurable and 0 is a martin-
gale under Q. The above holds for any A € g, so
1 _dPs  B(S,T)

B(S)B(0,S) ~ dPy B(S)B(,T)’
It follows that
dPs _ B(O,T)
dPr  B(0,S)B(S,T)’

Finally, consider S > T'. For any A € Fr we have

dPS 1 _ B(S’S)
Ps(A) = Eqg (1A 40 ) Eo (1" B(S)B(O,S)) =Eo (lA B(S)B(O,S))

_ B(S,S) 3 B(T,S)
~ e (IAEQ ( B(S)B(0,S) 7:T)) = Fe (L‘ B(T)B(O,S))

B(1.S)
B(1)

since 14 is Fr-measurable and
other hand,

is a martingale under Q. On the

dp dPg dP dP 1
Ps(A) = Epr(lA S) E(l =5 T) ( S

dP dPr dQ
Because the above holds for any A € F7, it follows that

B(T,S) _ dPs 1
B(T)B(0,S) dPy B(T)B(0,T)’

SO
dPs _ B(O,T)B(T,S)
dPr  B(0,S)

2.3. Since

dB(t,T) = B(t, T)u(t, T)dt + B(t, T)X(t, T)dW(1),
dB(t) = B(t)r(t)dt,

4dP; B(T)B(O,T)]
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2.5.

2.6.

Solutions to Exercises 5
we also have

1 1
% = —%F(I)df

and can use the Itd formula to compute

B T) _ 1 RS RS
A = BB T) + B T o + dB. T
_BOD oy = ryde+ B D s myawi,

B(1) B(1)

. B@t,T) - . .
Since g( t)) is a martingale under the risk-neutral measure Q, we can

conclude that the term next to dt is zero, so u(t, T) = r(t) for each
te[0,T].

Since (2.8) is a linear SDE, we know that its solution with initial
value B(0, T') can be written as

B(t,T) = B(0, T) exp ( f X(u, T)dW (1) + f (r(u)—%Z(u, T)z)du).
0 0

Fort =T we have B(T,T) = 1, so

T T
B(O,T):exp(— fo (u, T)dW (u) — fo (r(u)—%E(u,T)z)du).

Combining these two formulae, we get

T T
B(t,T):exp(— f X(u, T)dW (u) — f (r(u)—%Z(u,T)z)du).

This follows from the solution to Exercise 2.3. With u(¢, T) = r(t)
we get

B(t,T) B(1,T)
B —B(t) 2(t, T)YdW(t)

apr| _ 1 B4
dQ |, ~ BOT) B® ’

dé(t) = EOX(t, T)dW(2).

and since &(f) = we have

Given that

dB(t,T) = B(t, T)r(t)dt + B(t,T) Z i, T)dW(1),
i=1

dB(t) = B(Hr(tdt,



2.7.

2.8.

Solutions to Exercises

we can use the Itd6 formula to check that the Radon—Nikodym density
dP B, T)
0= —o| = 2
do |,  B(®HBO,T)

satisfies the SDE

dE(t) = £(0) ) Zi(t, AW,

i=1

Solving this SDE with the initial condition £(0) = 1, we find that

dPr ' 1 [+
&) = @‘r = exp ( fo ;z,m, T)dW,u) ~ 5 j; ;Zi(u, T)2du].

For t = T this gives

aPr _ exp f ' ii(n TYdW;(u) — 1 f ' iZ»(u T)*du
dQ o o 1 £ 1 2 0 o 1 9 .
Using the Itd formula and (2.8), we get
1 _ _dB(t, S) N dB(t,S)dB(t,S)
B(t,S))  B(tS)> B(t,S)
(¢, 8)*dt — r(n)dt — (¢, S)dW (1)
B B(1,S)

and

B, T)
d(B(t,S)

) =B(t,T)d (

_ B(,T)
" B,S)

1 )+ dB(t,T)

5.5y " Bas) B¢ T)d(

)
B(t,S)

(t,S)(X(t,S) - (¢, T))dt

B(,T)
B(t,S)
Since FP(1; S, T) = 3%1) this verifies (2.13).

BG.S)’
Ff;g_ ’ST)T) is independent of ¥, and FP(z; S, T) is F,-measurable,

7)

+

&, T)—-2(,5))dW(2).

Because In
we have

BS.T) _ K

PS(B(S’T)ZKW:’):PS(FP@-S T) = ¥P(S,T)

o1y BST) K

= n n
S\WFP(;S,T) = FPS.T)
=Ps (X >-d)

= N(d-),



2.9.

Solutions to Exercises 7

where

B(S.T) 1
In s T Ev(t, S)

X= v(t,S)

has the normal distribution N(0, 1) with mean O and variance 1 un-
der Py and where
FP(tS.T) 1
In === - 35v(1,5)

d_= K
v(t,S)

Likewise,

BS.T) _ _ K
FP(t;S,T) ~ FP(t;S,T)

Pr (B(S,T) = K|F)) = Pr(

7)

_ B(S,T) K
= (ln FP(:;S,T) =" FP(; S, T))
=Pr (Y >-d,)

= N(d,),

where

BST) 1
In 5 — V@ S)

Y= v(t,S)

has the normal distribution N(0, 1) with mean O and variance 1 un-
der Py and where

In PESD 4 Ly(z,S)

dr = W5, S)

Since
BC(;S,T,K) = B(t, T)N(d,) — KB(t,S)N(d-),
from the put-call parity relationship
BC(;S,T,K)-BP(#;S,T,K) = B(t,T) - KB(t,S)
we get

BP(:;S,T,K) = BC(t;S,T,K) - B(t,T) + KB(t,S)
= B(t,T)N(d,) - KB(t,S)N(d_) - Bt,T) + KB(t,S)
=-B(t,T)(1 - N(d,)) + KB, S) (1 = N(d_))
= KB(t,S)N(~d_) — B(t, T)N(~d.,).



8 Solutions to Exercises

Chapter 3

3.1. From (3.4) we have
F(t,r;T) = exp (—r(T 1) - %a/(T -1+ éaz (T - t)3).

We compute the partial derivatives

F(t,r; T 1
OFenT) (r ra(T -0~ (T - t)z) F(t.r:T),
ot 2
F(t,r, T
WCrD) _ - nFar),
or
2F(t, ;T
OECET) _ (7 — 12 Bt ).
or
This gives
OF@.riT) OF(rT) 1 ,0F(@rT)
ot T or 27 T ar

1 1
=(r+a(T -1 - 5(rZ(T—z)z—a(T—t)+ 5aZ(T—z)2 F(t,r;T)
=rF@t,rT),

which means that F'(¢, r; T) satisfies the term structure equation (3.2).
3.2. According to (3.5),

T
D, T) = f e 0N gg =
t

The mean of the random variable

1-— e—a(T—f)

[0

T T
X=6 f D(u, T)du + o f D(u, T)dW (1)

under the risk-neutral probability Q is

T T 1= e—a(T—u)
m=EpX) = 9f D(u, T)du = Qf —du
t t

a
= % (0T -1+ —1).

The variance of X is

T T 1= e—a(T—u) 2
5 = Var(X) = o f D@, T du = o f (—) du
t t

[0

0.2

23 (26! (T-1-3+ eT-0 _ e—er(T—t)) ]
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As a result, the zero-coupon bond price in the Vasi¢ek model can be
written as

T
B, T) = exp( -r(t)D(t,T) — Qf D(u, T)du

1 T
+=0? f D(u, T)zdu)
2 t

= exp( - r(l)é (1 - e—a(T—r)) _ a% (a (T — 1) +e T _ 1)
2

t1 (20/(T = 1) =3 + 4e™ T — 271 )

3.3. From the solution to Exercise 3.2 we have

T
Fit,rT)= exp( -rD(t,T) - Hf D(u, T)du

1, ! 2
+ Ea’ D(u, T) du
t

= eXp( _ rcl_y (1 _ e—a(T—t)) _ C% (a, (T -1)+ e~aT-0 _ 1)
2

+ W (2(1 (T - t) -3+ 4e—a(T—t) _ e—Z(U(T—Z)) )

We compute the partial derivatives

OF(t,r.T) B o2 (1 _ e—a(T—z))2 20 (1 _ e—a(T—t)) _ 2rleaT-D

F@t,rT),
ot 202 t,rT)
. _ a—a(T-1)
oF(t,r;T) _ _1 e F.rT).
or a

PF1,r,T) (1-eT 0\
o )=( : ) F(e.r.T).
r a
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3.4.

Solutions to Exercises
This gives
OF(t,r;T) OF(t,r;T) 1 ,0°F(t,r;T)
———t+@-ar)————— + o ———
o1 (0 =an—73, 27 T an
2
o2 (1 - e"’(T”)) — 20« (l - e’“(T’t)) — 2rae@I-n
( - 2a?

| —e -0 | — =T 2
e 2T (T e
a

2 a

=rF(t,r,T)

which means that F'(¢, r; T) satisfies the term structure equation (3.2).
First we integrate r(s) given by (3.9) from ¢ to 7,

T T
f r(s)ds = r(t) f e ds
' T s ' T s
+ f ( f 9(u)e_”(T_”)du)ds+ f ( f U(u)e_"(T_“)dW(u))ds

The first term on the right-hand side is equal to r(¢#)D(¢t, T), where
D(t,T) is given by (3.5). To compute the second and third terms
observe that

d( f ' G(M)e”(“‘)du) = 0(s)ds — a( f ' 9(u)ea<”>du) ds,

d ( f S a(u)e"(”)dW(u)) = o()dW(s) - a ( f S o (M)e”‘(”)dW(u)) ds

t

s e—als—u)
( f O(u)e™ - ”)du) d 0(u) du)

d ( 0(u)D(u, s)du)

Hence

—(l(b u)

t

( f o(u)e " ”)dW(u)) d 0'(u) dW(u))

= d(f o(u)D(u, s)dW(u)).

t

As a result, integrating from ¢ to 7', we find that

T T T
f r(s)ds = r(t)D(t, T)+f 0(u)D(u, T)du+f o(uw)D(u, TYdW (u).



3.5.

Solutions to Exercises 11

The random variable

T T
Xzf 9(u)D(u,T)du+f o(w)D(u, T)YdW (u)

is independent of ¥, and normally distributed with mean

T
m:f 0(uw)D(u, T)du

and variance given by the It6 isometry as

T
s2=f o (u)*D(u, T)*du

under the risk-neutral measure Q. Because the expectation of ™ is
e by (3.3) this proves that

T T
B(t,T) = exp (—r(t)D(t, T)- f Ou)D(u, T)du + % f o(u)?D(u, T)*du).
Using (3.11), we can write (3.14) as

r(s) = £(0, s) + (r(t) = f(0,1) e + f S o (u)*D(u, s)e” " du

0

! S
- f o(u)*D(u, H)e " duy + f o(w)e " dW (u)
0

t

= £(0,5) + (r(1) = f(0,0) e + fs o(w)*D(u, s)e™"“dy

+ f o(w)*(D(u, s) — D(u, 1))e™ " du + f So-(u)e_"(s_”)dW(u)
0

t

= f(0,8) + (r(t) = f(0,1)) e + f s o(w)*D(u, s)e™"“du

! S
+ f o(u)*D,(u, )D(t, s)e”*“du + f o(u)e " dW (u).
0

t

Computing the integral of r(s) from ¢ to T, changing the order of
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integration and making use of (3.15) gives

T
f r(s)ds
f T T T s
= f £(0, s)ds + (r(t) = £(0,1)) f e 0 ds + f ( f o(u)*D(u, s)e_"(s_”)du)ds
T t T s
+ f ( f o (u)*D,(u, ) D(t, s)e“(‘”)du)ds+ f ( f U(u)e”(‘”)dW(u))ds
t 0 t t

T T T T
= f 10, )ds + (r(t) — £(0,1)) f e U ds + f o(u)’ ( f D(u, s)e_"(“_”)ds)du

t T T T
+ f o(u)*D,(u, £)e 2= ( f D(t, s)e-““-”ds)d“ f o(u) ( f e-““-")ds)dW(u)
0 t t u

T
0+ 0= 100D+ 5 [ o@D T

t T
+%D(t, T) f o) D,(u, 1)’ du + f o(u)D(u, T)dW (u)
0 t

=1

Finally, substituting the above expression into the pricing formula (3.3),
we recover (3.13).
3.6. In the Merton model

InB(S,T)=-r(S)(T-S) - %a(T -S)Y+ éaz (T -S)*
with
r(S) = r(0) + a$ + cW(S).
As a result, the variance of In B(S, T) is
v(0,S) = Var (o(T — S)W(S)) = o> (T - S)*S.

Formulae (3.16)—(3.18) for the call and put prices apply with v(0, S )
given by this expression.
3.7. In the Vasi¢ek model

T 1 T
InB(S,T) = -r(S)D(S,T)-6 f D(u, T)du+ 502 f D(u, T)du
S S

with
—a(T—-1)

T
l-e
Dt T)= f ey = ———
t

a
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and
S S
r($) = r(0)e™ +6 f ey + o f e AW (u).
0 0

Therefore, the variance of In B(S, T) is
S
v(0,S8) = Var (O'D(S, T) f e‘“(s‘”)dW(u))
0

S
=o’D(S,T) f e 2 dy
0

2
= T (e (1),
Formulae (3.16)—(3.18) for the call and put prices apply with v(0, S)
given by this expression.

The formulae are the same as those for the Hull-White model with
constant o(¢) because they do not depend on the mean of In B(S, T)
but only on the variance of In B(S, T), which is the same as in the
Vasicek model.

3.8. By definition, K; = B(Ty, T;) fori = 1,...,n when r(T,) = 7. There-
fore, by using Proposition 3.5, we can write

_B(0,T)

= B0. T <P\~ = SO To)D(To. T)

1 To
- 5D(T. T)? f o)’ Dy, (u, To)’du |.
0

Substituting this expression into (3.24), we can use a numerical root
finding algorithm such as the bisection method to solve for the un-
known critical value 7 and hence find K; fori=1,...,n.

3.9. By applying the Itd formula to (3.10) and using (3.8), we get

dB(t,T) = (...)dt — B(t, T)D(t, T)dr(?)
= (...)dt — B(t, T)D(t, T)o(t)dW(?).

Comparing this with (2.8), we can see that

(t,T) = —o(t)D(t, T).
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3.10.

Solutions to Exercises

Substituting

Wi =w@) - f S(u, T)du
0
=W + f o(u)D(u, T)du
0

into (3.8), we therefore get

dr(t) = (6(t) — ar(®)) dt + o(t)dW(t)
(9(:) —ar(t) - o (12D, T)) dt + c(t)dw’ (t).

Observe that
13
#(t) = r(0)e™ + f 0(s)e " ds
0
satisfies

do(t) = (—a/r(O)e_‘“ -« f 0(s)e " ds + 0(t) | dt
0
= (—ad(t) + 6(1)) dt.
Since

1
a-p

y(1) = (),

we find that (3.36) holds:
du(t)  —Bu(Hdt + edZ(1)
a-p - a—-p
C_dz(1) = ~By(t)dt + ndV(1),

dy(t) =

= —By(t)dt +

a-p
where we put

&
= —, V = Z .
n 7 (1) =Z(1)

Moreover, since

Mﬂ=d0—ﬂ0—é¥%=d0—ﬂ0—ﬂ&



Solutions to Exercises 15
we find that (3.34) holds, and (3.35) is also satisfied:

dx(t) = dr(t) — d¢(1) — dy(1)
= (0(1) + u(®) — ar(t)) dt + 6dW(t) — (—ad(t) + 6(1)) dt
— (=By()dt + ndV (1))
= —a(r(t) — ¢@) — y(2)) dt + 6dW () — ndV ()
= —ax(t)dt + odU(1),

where we put
o= \6*+n*-20mn0
and define a Brownian motion U(?) by
0
U = 2w - Lva.
o o
Finally, we consider (3.37):
0 oo —
AUV (D) = d(—W(t) - 2V(z))dV(t) =275 — par,
o o o

where

3.11. The integral of the short rate (3.38) is

T T T -
f rs)ds = f $(s)ds + x(1) f e " ds + y(1) f e P ds
T S T s
to f ( f e‘““‘”)dU(u))ds+n f ( f e—ﬁ(s—u)dv(u)) ds

— o—a(T-1) 1 — e BT

T 1-e
= f ¢(s)ds + x(1) + (1)
: @ B

T 1 = e~a(T-u) T 1 Z e BT-w
+a’f e—dU(u) + nf e dv(u),
‘ a t B

where the double integrals can be computed in a similar way as in
the derivation of formula (3.6). It follows that

! ! 1 —e T 1 —eBT-D
f F(S)—f qﬁ(s)ds—x(t)eT_y(t)eT

T 1= —a(T—u) T 1-— —B(T~u)
:o'f e—dU(u)+77f T v
t a t ﬁ
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is independent of ¥, and normally distributed under the risk-neutral
measure Q with mean 0 and variance

T (] _ e—a(T-u) 2 T (1 _ eBT-u) 2
V(t,T):(Tzf - du+772f - du
t (¢4 t B

T —o(T— _B(T—

l_ea/(T u)l_eﬁ(T u)

+20’an du
t @ B

2

o o o
:27“3(20/(T—[)_3+4e (T=1) _ o=2a(T ,))

2
+77_ (2,8 T-0-3+ 4eBT-0 _ e—ZB(T—z))

233
2, 1-— —B(T-1) 1-— —a(T—1) 1 - —(a+B)(T—-1)
Ml (T -1 - c - ¢ + ¢ .
ap B a a+p

Hence, applying (3.3), we obtain formula (3.39) for the bond price.

. Solving the SDEs (3.35), (3.36) with the initial conditions x(0) = 0

and y(0) = 0, we get
13 !
x(t) =0 f e dU®w), y(t) =7 f e P4V (u).
0 0

Because
dUndU(t) =dt, dV(@&)dV() =dt, dU@)dV(t) = pdt,

by (3.42) the variance of In B(S, T) is

— e T=5) 1 —eBT-5)

v(0,5) = Var(l—x(S) + —y(S))
@ B

1 — e—@T-S) 2 s 1 — e BT-5) 2 ~S
= o’ (—) f e gy + (—) f e Py
a 0 B 0

—-a(T-S —p(T-S S
1 — e=T=5) | _ g=BT—S) f B g
0

+20mp 5
= %&’23 (1 - e*a(T—S))2 (1 _ efzas) " %; (1 _ ef'B(T’S))z (1 ~ e*Zﬁ’S)

2 . e @
ey ) (=T (1),
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Chapter 4

4.1.

4.2.

In Example 4.2 we found that the instantaneous forward rate in the
Ho-Lee model can be written as

f(t,T) = f(0,T) + %a’zt(2T — 1)+ oW()

and the short rate as

r(t) = f(t,1) = £(0,1) + %azﬁ +oW(@).
It follows that

T T 1
f f(t,u)du = f (f(O, u) + E(rzt Qu-—-1+ O'W(t)) du
T
= f (0, u)du + %O’th (T-=0+0(T-)W(@)

T
= (T - 1) (r(t) — £(0,1)) + f (0, u)du + %o-zt(T -1,

As a result,

T
B(t,T) = exp (— f f(t, u)du)

T
= exp (— (T -1 (r(t) - f(0,1) — f £, u)du — %0‘2t (T - t)2).
Setting £(¢) = o(t)e* and n(t) = e, we have
1 T T
I(t,T) = — f n(u)du = f e “Ddu = D, T),
n@ J; t
where D(t, T) is given by (3.5), and

lI(z, T)> f E(s)n(t)’ds = 1D(r, T)> f o(s)’e 29,
2 0 2 0

Noting that

r B, T
exp (—f £, u)du) = B((O t))’

we recover (3.13), the Hull-White zero-coupon bond price at time
t > 0 that gives an exact fit to the term structure of interest rates at
time 0.
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4.3. The short rate r(¢) in the Gaussian HIM model with separable volatil-

ity is given by

r(t)=f(0,t)+f0§(S)77(l)(f é’(S)n(u)du)dS+f0§(S)n(t)dW(S)-

We take the stochastic differential
Af (0, ) t t t
dr(1) =( f;t 2 +1'(0) fo &(s)’ ( f U(u)du) ds +n(t) fo E(s)’n(n)d's

+17' (D) f é"(S)dW(S))dt+§(t)77(t)dW(t).
0

Using the above expression for r(¢), we can write

! 0,
fo £(s)dw(s) = O (’;)( ) f £(s) ( f n(u)du)ds.

Substituting this into the stochastic increment for r(¢) and noting that
' (t) = a(t)n(t), we arrive at

0f(0,1)
ot

dr(t) = ( + (1) + a(®)(f(0,1) — r(t))) dt + o()dW (1),

where

() = f r a(s)* exp (—2 f t a(u)du) ds
0 K

4.4. We have o(t,T) = f(T — t), where

f(x) = o(yx + De 1™,

The derivative of this function is

f(x) = 0(7 - g (yx + 1))e’§",

. . .. 2y-1 2y-1 .
which is positive for x < Z— zero for x = fl—y and negative for
2y-1

= <X Thls shows that o(¢, T) as a function of 7 has a maximum

atT =t+ /l_y’ is increasing to the left of this value, and decreasing
to the right.

4.5. By Theorem 4.1,

dB(t,T) = r(t)B(t, T)dt + X(t, T)B(t, T)dW(t)



4.6.

Solutions to Exercises 19

with deterministic log-volatility

T T
X1, T) = —f o(t,u)du = —af (y(u = 1) + De 2 Day
- 2% (AT = 1)+ A+2y)e2T0 — (A+2y)).

It follows by Theorem 2.4 and Exercise 2.9 that the call and put
prices are given by (2.21), (2.22), (2.18) and (2.20) with

S
W, S) = f (Z(u,T) — X(u, S))> du

402 S
=

4 2 S
= % f (A - Bu)* e"du,
t

where

1 N 2
((y/l(T—u)+/l+2)/)e_§(T—u) —(yA(S —u) +/l+2y)e—5(S—u)) du

A= AT + A +2y)e T — (yAS + A+ 2y)e 25,
B=vyA (e*%T — e*%s).
Integrating by parts, we obtain

802
-~ BB+AY (S et — te*’)

v(t,S) = 4/%232 (52615 _ tzem)
4o 2 292\ (S _ At
+7(ZB +2ABA+ A1) (¥ —e").

When U =T, (4.14) becomes

df(t,T) = ) oilt, 1AW, (1),

i=1

where W1 (1) = (WIT ®,...,wr (t)) is a Brownian motion under the
forward measure Py. If

T n
Ep, f ot T)2dt] < o,

it means that f(z, T') is a martingale under Pr. Since f(T,T) = r(T),
it follows that

Ep, (r(M\F1) = Ep, (f(T, DI F) = f@,T).
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4.7. The choice of o(t, T) = o(t)e T~ is of the form (4.6), where &(f) =
o(t)e® and n(T) = e*!. Therefore, by (4.7), f(t,T) can be written
in terms of the short rate r(¢). For our choice of volatility we have

t T
f(t,T) = 0, T) + (r(t) — £(0,1)e™ T 4 f a?(s)e T f e “duds.
0 t

Substituting this into the one-factor equivalent of (4.15) and calcu-
lating the integral with respect to du, we get (3.29).

Chapter 5

5.1. First we show that Zl.j ® =2, n[,,le (¢) is a Brownian motion un-
der the forward measure PT,- foreachi = 1,...,n. To this end, we
use Lévy’s characterisation of Brownian motion, according to which
it is enough to verify that Zij () and Zl.j (1)* — t are martingales un-
der Pr; and have continuous paths. The continuity of paths follows
from that of W,j (t). Next, for any 0 < s < ¢, we compute the follow-
ing conditional expectations by using the fact that W{ ®,..., W,{(l)
are independent Brownian motions:

EP,,.‘/_ (Zl.j(t)) ﬁ) = Z ni,lEP»,-/. (sz(t)| 7:5)
=1

= > nuWi(s) = Z](s)
=1
and

Ep, (Z/P|F) = D muminEe,, (W OW0)|F.)

Lm=1

= " 0 (S0t = 5) + W/ (9W](5)

I,m=1

= D =)+ Y numin Wi (HWi(s)
=1

I,m=1

=f- s+Zij(s)2,

where 6;; = 1if i = hand 0 if i # h, and where we apply the
equality 2/, mmiy = pi; = 1. We can see that Z/(r) and Z/(1)* — 1 are
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indeed martingales under Pr; with continuous paths, hence Zij (t)isa
Brownian motion under Pr,.
Moreover,

dZJ(dZl(t) = ) mdWi @) Y mndWi(o)
i=1 m=1

= Zn: Zn: N i mOimdt = Zn: NeiMridt = prydt.
P

i=1 m=1

5.2. It was shown in Section 5.2 that
Ti-1 ) 1 Ti
Fi(Ti.y) = Fi(t) exp (f oi(s)dZi(s) - zf O'i(S)zdS)
t t

1
= Fi(t)exp (—s,-X,» — Es,z) s

with

Ti-1
Si = f oi(s)3ds
t

and

1 Ti-1 )
Xi= -~ f o(5)dZi(s),
Si Ji

i

where X; is independent of ¥, and normally distributed with mean 0
and variance 1. Observe that

F(T_.)>K < X;<d_,

where

Since F;(t) is F;-measurable, it follows that

Ep, (Lt on| 77) = Bey (Logsa )| 77)
= %e‘fdx = N(d)

—o0 2w
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and

EPTI,(Fi(Ti—l)l(Fi(T,-,l)zK]| 7‘7) = Fi(f)EPT,,(67‘Y"X"7%S?1{Xigdf,| 7:,)

N » 1 )
=F(n) | e ——e Tdx
N

—00 271'
-1 (+s)?
= F;(t) e 2 dx
—e 21
—+S; 1 2
= Fi(0) ¢ = dy = F(ON(d.),
—o0 2r
where
InZ0 4 12
dy=d_+s= —X 21

Si

5.3. Let Z{ ®,... ,Z,{(t) be correlated Brownian motions under the for-
ward measure Pr, that satisfy (5.1) and let i > j. Then we have
T; > T;. The Radon-Nikodym derivative of Pr, with respect to Pr,
is
dPr.  B(0,T;
arn uB(Tj’ T)),
dPr,  B(0,T)
which corresponds to the change of numeraire from B(z, T;) to B(t, T}).
The associated Radon—Nikodym density is
dPr.

£ = EPTj(dPTj 7';)
_ B(0,T)) B(T;,T))
B0, T)) P"f(B(Tj,Tj)

_ BO,T)) B(t,T)
') 7 B(0,T) B(t,T))

It can be written as

_BO,T) {1 B&T) _BOT) 1

£i(r) = = .
20O, L BTy T BOT) L T nRa@

By the It6 formula, we get

. S ndF)
dé () = =& KR L )dr
£(0) “ﬂgﬂl+nnm+( )di

The explicit expressions for the terms with dr will not be needed. We
substitute

dF (1) = () Fi(n)dt + o (DF(DAZ](1)
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using the SDE (5.2) and collect the terms with dZ,{(t) and dt sep-
arately. Because f}(l) is a martingale under Pr,, the terms with dt
cancel out, so

T k(D) Fi(2)

dz’ ().
]+Tka(l) k()

dgi(0) = €50

k=j+1

Next, substituting for z’ 2 (1) from (5.4), we get

Tk (O F () ;
dEi(t) = —£(1) § § M dWi (),
S TR

and solve this SDE to obtain

go-en(- [ 32 SR nao

k=i+1 I=1

1 f LG 1o i($)Fi(s) Tiori(s)F(s)
Y Prds|.
2 0 S5 1+ Tka(S) 1+ TIFI(S)

Given that le (r)forl =1,..., nare the components of an n-dimensional
Brownian motion under the forward measure Pr,, we can apply the
Girsanov theorem (see [BSM]) to conclude that

Tk () Fi(s)

r J
Wi(1) = W/(t) + f
: N k; [+ nFi(s) ™

for [ = 1,...,n are the components of an n-dimensional Brownian
motion under Pr,. Now we apply (5.4) once again together with (5.5)
to finally find by using Exercise 5.1 that

n n rJ

; ; : 70k () Fr(s)

20 =Y maWy = > m,m[wz,,(m [ 3 iy, s
m=1 m=1 0 k=ix1

1+ Tka(S)
¢ J
j 730 (5)Fi(s)
=7 — - h.d
1 (1) + j(; k;” 4 1 Fy(s) Peds

for/ =1,...,n are Brownian motions under Py, correlated so that
dzZ,(tdZ)(t) = pydt.
5.4. Leti> j. We put [ =i in Exercise 5.3. This gives

710k ($)Fi(s)

Z(0 =Z)w + f 2 TerFi

0 r=j+1

Prids.
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Substituting this into (5.3), we get

dF (1) = o (O F(DdZi(D)

TkO'k(l‘)Fk(f)p "

= C(OFAZI0) + (OF (D) T Em P

k=j+1

Comparing this with (5.2), we obtain

: S T (DT F(D)
WO= ) ST
k=j+1 TeFi(

5.5. Lett € [0, T,]. The discrete money market account can be expressed
as
a(t)

L(t) = B, Taw) | | = B(t, Tuo)L(Toty),
k=0

B(Ti-1,Ty)

where a(?) is given by (5.15). Since L(T o) is Fr,,, ,-measurable and
To@-1 < t, we have

Bo | 2Ll ) _ 1B (oo | 7] = LT [ 2oz Ta)|
N BToe| ") = HI a0 B g7, 5| 71| = HIwo)Bo| =g 7| T
_ B(t, Ta(,)) _ &
= L(Ta(r))w = B0

It follows that for any 7 € [0, T},]

LT[\ _ L(T,) (LT
Eo ( B(T,) T’) =Eo (EQ ( B(T,) ﬂ"‘) ’C’) =Eo ( B(T,,) ﬁ)
~ L(T,.,) (LT
=Eo (EQ ( B(T,) ﬂ“) ﬁ) =Eo ( B(T, ) ?’)
=Eo (EQ ( B(Twy+1) 7:TM) Tt) =Eo ( B(Ty) 7:’)
L(t)
B(t)’

hence Z2 is a martingale under the risk-neutral measure Q. Taking

B()
B(t,T,) as numeraire, we can conclude that B(LI('T)) is a martingale

under the corresponding measure Pr,; see Section 2.1.




Solutions to Exercises 25

5.6. According to Theorem 4.6, in a multi-factor HIM model the bond
prices satisfy the SDE

dB(t,T) = r(t)B(t, T)dt + Z %, T)B(t, T)dW(1),

i=1

where (W,(t), ..., W,(?)) is an n-dimensional Brownian motion un-
der the risk-neutral measure Q, and where

T
(T T)= —f oi(t,u)du

with o(t,T) for i = 1,...,n being the volatilities for the instanta-
neous forward rate f(¢, 7). Solving the SDE with a final condition
B(T,T) =1, we get

T n - ,
B T) = exp [_f Z Xi(u, T)dWi(u) + % f Z %i(u, T du — f r(u)du]
o=l 5 .
B(t) T |
- B exp (— f, Z; Zi(u, T)dW;(u) + 3 ft ; zi(u, T)zdu],

B(1) = exp (f[ r(u)du).
0

This enables us to derive the formula
dPg 1

dQ  B(S)B(0,S)
S n S n
=exp( fO ZZ,»(u,S)dW,-(u)—% fo ZEi(u,S)zdu]
i=1 i=1

for the Radon—-Nikodym derivative (see also Exercise 2.6). Hence,
by the Girsanov theorem, the process (W5 (7), ..., W5 (1)), where

where

Wf(t)=Wi(t)—f2i(u,S)du
0

fori=1,...,nand t € [0, 5], is an n-dimensional Brownian motion
under the forward measure Ps.
5.7. In Section 5.5 we saw that
dP;
dPr,

= B(O, Tn)L(Tn)
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In the same manner we can show that
dP;

— =B T[LT,'
ap; = BO-THLT)

forany i = 1,...,n. The corresponding Radon—Nikodym density is

dP
1) = —=| =Ep, (BO, T)L(T)|F)
dPT’. . !
L(T)) L(1)
= B, T)Ep, | ———— =B0,T)———=
©. T8, (B(Ti, 7 T’) O 1501
since B(L,([T),) is a martingale under Pr,. Putting a(¢) = min{j : t < T}},
we have L(t) = L(T o)) B(t, To)) and so
B(t7 T(l(l))
L
“(t) = BO, T)L(T o)) ———.
€0 = BO T) T )= =28

Using the Itd formula and SDE for bond prices in a multi-factor HIM
model given in Theorem 4.6, we find that £-(7) satisfies an SDE of
the form

dEH(D) = EHD) ) (Sult, o) = Sa(t, TH)AWLD) + (- )t

k=1

= £HD) ) (Sult, Toi) — Zult, THAW,(0),
k=1
where (Wi(2), ..., W,(1)) and (Wi(7),..., Wi(r)) are n-dimensional
Brownian motions under the risk-neutral measure Q and under the
forward measure Py, respectively. The second equality holds be-
cause £(¢) is a martingale under Pr,. The precise form of the expres-
sion in front of dt is not important in this argument and is omitted for
brevity. This SDE for £-(#) can be solved with the initial condition
£H(0) = 1 to get
dPy

e
dTTi—fi(T:)

n T . 1 & T
= exp [Z ‘fo‘ (Zk(l‘, T(,(,)) — X (t, T,)) dW;{(l) — E Z ﬁ (Ek(t, Ta(,)) — X (t, Ti))z drl.
k=1 k=1

It follows by the Girsanov theorem that (WX(7), ..., WX(r)), where

W) = W) - f (Zk (s, Taqr) — Zi(s, T1)) ds
0
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fork = 1,...,n,is an n-dimensional Brownian motion under the spot
LIBOR measure P;.
5.8. By (5.20),

7-m/lm,k(lt)[:m(t)

S To) =S T = ), s

m=a(t)+1

i

Tmnm,ka-m(t)Fm(t)
1 +71,F,(0)

m=a(t)+1

Substituting this into (5.22) gives
!
Wi(1) = Wi () + f k(s Taw) — Zi(s, Ti)) ds
0

"G Tllnk () Fo(s)
= Wk f Dlins T (S)
k()+ . Z Ky

e 1+ 71,F,(s)

As a result,

Ziy = ) npWi)
k=1

. ! i TmMlm kO'm(S)Fm(S)
= § o | WE@) + § : d
k=1 r]],k{ k( ) A[O‘ 1+ TmFm(s) g

m=a(t)+1

¢ i
5L Tmpi,mo-m(s)Fm(s)
=Zon + fo > T s

m=a(t)+1
5.9. Substituting (5.23) with i = j into (5.3), we obtain
dFi(t) = o) Fi()dZ{(1)

N TPinT DT OF () o
= L TR O S OFOAZ O

m=a(t)+1
5.10. The critical values of (5.25) are found by solving

do (1)

o = (ac=b+be (T ~1) e<Ti=n — )

to get

Tiy—t=

Q=
|
SR



28

Solutions to Exercises

The second derivative of (5.25) at that time is

ot
dr?

= —bce 17D,

i —t=1l_a
Tioi—t=,-%

Since ¢ > 0, the extremum is a maximum when b > 0.

. Solving the SDE (5.33), we get

To To
So,n(To)ZSO,n(f)eXP( f oW - 3 f ao,n<s)2ds)

1
= SO,n(t) exXp (_SO,nX - _S%,n) s

2
where
To
Son = f O-O,n(s)zds
t
and
1 (P
X=- f O'O,H(s)dWA(s)
SO,n t

is independent of ¥, and normally distributed with mean O and vari-
ance 1. We have

PSWpt,,,(1) = Aon(OEp, ((S0a(To) - K)*| F7)

= Ag,(D) (EPA(S O,n(TO)l{SO_,,(TO)zK}| 7’7) - KEPA( l{so,,l(To>2K}| 7‘7))

Observe that

InSw® _ 12
0
SoaTo) 2K &= X< —X 22" -4
S0,n

As a result,

EPA( I{So_n(TO)ZK}| 7’7) = EPA<1{X5¢1,1| 7—‘[)

1 2
= — e Tdx=N(d)
\2r

—00 2
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and

EPA(SO»"(TO)I{S(){,,(TO)ZK}| '7:[) = Sovy,(t)EpA(efso,nX*%.v(Z)ﬁI{XSdJ' /(-:t)

& — S X—1 52 1 -2
= So0a(0) e T ——e 2 dx
—00

\2r
d_ V2
1 (oon)
= SO,n(t)f ——e " 2 dx
o V27
d,+507n 1 2
=S ,n(t)f e 7dy = So.(N(d,),
0 . m 0. +
where
InSw® 10
dy =d_+so, = kK 270
S0,n

It follows that
PSwpt, (1) = Ao, (1) (So.()N(d,) — KN(d.)).

5.12. We need to switch from the terminal measure Pr, to the swap mea-
sure P, to transform the SDE (5.12) for the forward rates F;(¢) un-
der Pr, into the SDE (5.35) under P4. The numeraires associated
with Pr, and P4 are B(t,T,) and Ao, (?), respectively, so the Radon—
Nikodym derivative of P4 with respect to Pr, is

dPA _ B(07 Tn) AO,n(Tn)
dPT B AO,n(O) B(Tns Tn)’

n

and the corresponding Radon—-Nikodym density process is
B(0,T,) Aox(1)
£ = B, [ T4 ) = D0 Tn) 20
dPr, Aon(0) B(t,Ty)

_ BO.T) v BL.T)
AO,n(O) =1 JB(I’Tn)'

dPy4

In Section 5.3 we derived the SDE (5.10) for &) = 3573 5w,
which implies that

d(B(t’ Tk)) _ B, Ty) Zn: 7,0 (1) Fi(7)

B.T,) ~ B.T,) 24 T+nFm 2@

I=k+1
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As a result,

B(0,T,) & . d(B(t, Tk))
Aoa(0) &\ B, T,)

_ BO.T,) X BTy N+ nouF,()
T A0u(0) & BT, AT+ TF ()

-1

déy (1) =

dz;(n)
vy
B(t, Ty) Tio() F(2)

zmanbi .
Aoa(0) &4 £ B T,) 1+ 1,Fi(0)
1

B, Ty) tio(OF (1)
“Aoa(t) 14T (1)

dzZ} (1)

=& T

=2 k=1

dz; (0.

By following the same argument as in Section 5.3 involving orthog-
onal Brownian motions, we can conclude by using the Girsanov the-
orem that

n I-1

ﬁm:ﬁm—f Tk
05

=2 k=1

B(s, Ty) T101(8)F () ‘
Aon(s) T+ 1F(s) "

ds

for i = 1,...,n are correlated Brownian motions under the swap
measure P4 such that

dZ}()dZ} (1) = p; dt
foralli, j = 1,...,n. Substituting this into the SDE (5.12), we obtain
dF (1) = p (OF(0)dt + o () F(1)dZ] (1)
with

B(t, T)) Tipr,i0(t)o () Fi (1)
Ap(0) I+ 7 Fi(2) .

pi(0) = () +

n k-1
T
=

k=2 I=1
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Using (5.13) for u (), we therefore get

/[;\(t) - _ i Tkpk,io-i(t)O'k(t)Fk(t)

Frr! 1 + 1 Fi(t)
N Z i - BT T (0D F(0)
o= Ag,(D) L + 7 Fi()
i k-1

B(t, T)) oo i)k (D) Fi(?)
Ao (D) 1 + 7 Fi(2)

- N BT ) T (DO
S Ao 1 + 7, Fi(0)

B(t, T)) Tipr,ioi(®)ok(D) Fi(?)
Ag (1) 1+ 7 Fi(2)

e

e

k=2 I=1
_ Z B T) Tiprio (oD F()
k=it1 I=k lAO,n(t) 1+ Tka([)

since
k-1 n

B, T) B, T) B(t, T
1= T = T + T—.
; T S Aga(0) 2 0)

Changing the order of summation, we can also write this as

1=k

i—1 i
B, T Ti(OT(OF(t
we) = ZTI @ 1) TPk, T (Do () Fi(r)
=1 AO,n(I) =l 1 + 7 Fi(0)

Z”: _BG.T) 5 o (D0 (O F(1)
- 1
AO,n(t) k=itl 1 + Tka(t)

I=i+1

Chapter 6

6.1. We proceed by induction on m. Denote by () the n X m matrix
with entries
-1
77,(3) (0) = cosb; 1_[ sin;; forl < j<m,
k=1
-1
@) = | | sin 6.
1

3

>~
Il
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For m = 2 the ith row of 7®(8) is represented by the vector
[ (2)(9) 77(2)(0) ] = [ cosb;; siné;; ] ,
whose squared Euclidean norm is
(77,(-,21))2 + ( (2)) (cos6;1)* + (sinf;;)* = 1.

Now suppose that we have already proved for some m > 2 that the
squared Euclidean norm of the ith row

[ nP@) ne - 7o |
of 7™(0) is equal to 1, that is,
(@) +---+ (@) =1

Observe that
<."?+‘>(9)= @(9) forl < j<m,
(m+1) _
nw (6) = 0089”7177 (),

ni (0) = sin ei,mnﬁf:;)(e),

It follows by the induction hypothesis that the square of the Eu-
clidean norm of the ith row

[ (m+1)(0) n(m+l)(9) fn;;ll)(e)]
of n™*D(0) is
<’"*”<9>)2 (o)

(n +

(@) + -+ (1O + (cos6,) (12O + (sin ;) (1))
(n (

1

DO) + -+ (L, O) + (1n©)

’

completing the induction argument.
Since

p6) = nOn®)",
it follows that for any x = (xy,..., x,) € R”
xp(O)x" = xp@n®) x" = (xn(6)) (xn(0))" = lxn@)I> > 0,

where || - || represents the Euclidean norm in R”. This means that p(6)
is a positive semidefinite n X n matrix.
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6.3. To verify the inequality
m@m-—1) < nn-1)

— 1=
n(m—1) 2 T 2
we move all terms to one side and factorise:
n(nz— 1) -1+ m(n12— 1) _ n+1 —1;1)(n—m) >0

The expression is non-negative for any m < n, which proves the
above inequality.

Chapter 7

7.1. By the Bayes formula for conditional expectation (see [PF]),

dPr,,
dPr,

dPr,

dpy,

EPTH (L(Tier, THIFD) EPT,,( 7'-:) = EPT,. (L(Ti—l Ty

)

A+ 7 LT, Ty)).

The Radon—Nikodym derivative of Pr,_, with respect to Py, is
dPr.,  B0O,T) B(Ti.1,Ti;y)  B(0,T)
dpPr,  B(0,Ti.) B(Ti-1,T)  B(0,Ti-1)
It follows that

dPr,_ B(0,T;) B(Ti-1,Ti-y)
E = = E
PT{( dPr, TZ) B0, T, ) "\ B(T1,T)) 7
_ B0, T) B(,T:i)
~ B(O,Ti) BT
since B;I(‘I’T;;) is a martingale under Pr,. Moreover,
dPr,_ B(0,T;)
E L(T;,_, T; = = E L(T., T)( + 7, L(T;_,, T; .
PTI.( (Ti-1, T)) P 7:1) BO.T.) pr (L(Ti1, T7) (1 + 7, L(Tie1, T F)
Since % is a martingale under Pr,_,, as a result we have

Lia,(?) = B(z, Ti—l)EPTH (Lia;(T;-)| F7)
= 1;B(t, Ti-1)Ep, (L(Tio1, T F1)
= 7,B(t, T)Ep, (L(Ti-1, To) (1 + 7. L(Ti-1, T F1)
= 7,B(t, T)Bp, ( L(Ti-1. T)) + TiL(Tiey, T)Y| F7)
= 7,B(t. T) (Fit) + TEp, (L(Ti1. T)| 7))
= 1,B(t, T)F(?).
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Finally, because EPTi(L(T,‘_] , T,-)Z) T,) is a martingale under Py, and
so is F;(2), it follows that F;(¢) is also is a martingale under Pry,.
Solving the SDE

dF (1) = o) F,(DdZ{(1),
we obtain
Fi(t) = F;(O)exp (f cri(s)de(s) - %f cri(s)2ds).
0 0

It follows that

T,;[ Ti—l
LTy, TP = F(Ti1 ) = F,(0)* exp (2 f Ti()dZi(s) - f m(s)zds).
0 0

Since the volatility o(¢) is deterministic and Zl?(t) is a Brownian mo-

. . T, ;
tion under the forward measure Py, it follows that fo : oi($)dZ;(s)
has the normal distribution with mean O and variance

Ti1
f oi(s)’ds = V?T,-_l
0

under Py,. As aresult,

2
EPT (L(Tl L T)Z F. (0)2f —C 221, er—v,zTde
27TV2T, 1
B (.Y*ZVIZT,'_I )2
= F,’(O)zev’TT" ! f 2",-2Ti—| dx
27TV2T, 1
= Fi(0)%e",

Using the expression (7.5) of the bond B(T;, T;) discounted by the

annuity A;x(7;) is by linear function of the swap rate, namely
o S+,
AT o

we can write
k ‘ .

B(Tls T )

A (TN i+ Si Ti L. = 1
ng 7 ATy ];1 Tj+ S8 ix( )FEM 7;B;

Since by (7.6) we have

Sik(0) \ Air(0)
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it follows that

k k
Z Six(Ty) Z
. i 1— =
a/j:HI o Six(0) { a/j:HI TJ}

For this to be valid we must have

k
a Z Ti=1,
=i+l
i.e. (7.7) must hold true.
To approximate the price at time O of a set-in-arrears CMS we use
(7.8) and (7.11) with [ = i to get

n—1

CMSia(0) = 701 BO, T)Ep, (Siion(T) - K)
i=0

n—1

= i1 Aisem(0) (@S 10m(0) + BEp, (S ism(T?))

i=0

n—1
-K Z 711 B(0, T;)
i=0
n—1
2 )
~ Z Tis1Aii+m(0) (015 iiem(0) + BiS i im(T)) L""*”’Tl)
i=0

n—1
~K )" 711B(0, T)),
i=0

where

) -1
~ i+m ~ 1 B(O, Ti) B
o [Z TjJ - PiE S iism(0) (Ai,i+m(0) a)'

=i+l
The payment at time 7 is

¢i = T@F(Ti1) + X = K)ol f o j=1.omt <l

fori = 1,...,n. In particular, if the trigger level has been hit in any
of the previous accrual periods, the indicator function and hence the
payment ¢; will be zero. The value of the trigger swap at time 0 is

i=1
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where the discrete money market L(¢) is used as numeraire and the
expectation is taken under the spot LIBOR measure P;.



