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Problems for Chapter 13 of Advanced Mathematics for Applications

The Legendre Equation

by Andrea Prosperetti

1. By following the steps indicated in section 13.3.3 p. 322 prove the recurrence relations (13.3.18),
(13.3.19) and (13.3.20).

2. Deduce the relations (13.3.21), (13.3.22) and (13.3.23) from (13.3.18), (13.3.19) and (13.3.20).

3. By using the generating function (13.3.13) p. 320 for the Legendre polynomials prove that

∫ 1

−1

(cosh 2x − z)−1/2Pn(z) dz =

√
2

n + 1
2

exp[−(2n + 1)x] .

4. Prove that
∫ 1

0

P2ℓ(µ) dµ = 0 while 2(ℓ + 1)

∫ 1

0

P2ℓ+1(µ) dµ = P2ℓ(0) ,

with the first relation only valid for ℓ 6= 0.

5. Prove that
∫ x2

x1

(1 − x2)P ′

m(x)P ′

n(x) dx =
[

(1 − x2)PmP ′

n

]x2

x1

+ n(n + 1)

∫ x2

x1

Pm(x)Pn(x) dx .

From this result deduce the value of
∫ 1

−1(1 − x2)P ′
m(x)P ′

n(x) dx .

6. Prove that, if m and n are integers with m < n, both being even or odd, then

∫ 1

−1

P ′

m(x)P ′

n(x) dx = m(m + 1) .

7. Show that the integral
∫ 1

−1

x(1 − x2)P ′

m(x)P ′

n(x) dx

vanishes unless m = n ± 1. Calculate its value in these two particular cases.

8. Show that, if m > n and m − n is even, then

∫ 1

0

Pm(x)Pn(x) dx =
1

2m + 1
for m = n

and vanishes otherwise.

9. By using results from the theory of the Legendre polynomials show that, for a > b,

∫ π

0

(a + b cosx)n dx = π(a2 − b2)n/2Pn

(

a√
a2 − b2

)

.
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10. By using results from the theory of the Legendre polynomials show that

∫ π

0

(cos t + i sin t cosx)n dx = πPn(cos t) .

11. Show that the generic coefficient an of the expansion f(x) =
∑∞

n=0 anPn(x) may be written

an =
n + 1

2

2nn!

∫ 1

−1

(1 − x2)nf (n)(x) dx ,

provided the function f is sufficiently smooth.

12. Prove the relation

(1 − x2)Pn

(

1 + x

1 − x

)

=

∞
∑

k=0

(

n
k

)2

xk .

(Apply Leibnitz’s rule for the derivative of a product to Rodriguez’s formula and make a suitable
change of variables.)

13. Show that

Pℓ(z)Qℓ−1(z) − Pℓ−1(z)Qℓ(z) =
1

ℓ
,

and deduce from this relation the expression (13.5.2) p. 327 for Qℓ(z).

14. In spherical polar coordinates the equation of an axisymmetric, nearly spherical surface of revolution
is r = a[1 + ǫPn(cos θ)] where |ǫ| ≪ 1. Show that, if terms of order ǫ3 and higher are neglected, the
volume enclosed by the surface and the area of the surface are given, respectively, by

4

3
πa3

[

1 +
3ǫ2

2n + 1

]

and 4πa2

[

1 +
1

2

n2 + n + 2

2n + 1
ǫ2

]

.

15. Reduce to integrals the calculation of the infinite sums

S1(z) =
∞
∑

n=0

1

n + a
Pn(z) , S2(z) =

∞
∑

n=0

1

(n + a)(n + b)
Pn(z) ,

where a, b are real positive constants. Find also a relation which expresses S2 in terms of S1.

16. Show that, if Jn+1/2 is a Bessel function of half-integer order n + 1/2 (section 12.3 p.309), then

∫ 1

−1

eiztPn(t) dt =

(

2π

z

)1/2

inJn+1/2(z) .

You can (a) prove the statement by induction starting with n = 0, or (b) prove that both sides of the
equality satisfy the same differential equation and the same boundary conditions, or (c) that they both
satisfy the same recurrence relation and conditions sufficient to make them equal rather than merely
proportional.

17. Use the recurrence relation expressing zPℓ(z) in terms of Pℓ±1(z) to find the value of P2ℓ(0) given on
p. 319.
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18. The generating function (p. 320) for the Hermite polynomials (section 13.9 p. 334) is given by

exp(2tx − t2) =
∞
∑

n=0

1

n!
Hn(x) tn .

By following a method adapted from that described in section 13.3.3 p. 322 prove the relations

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0 (n ≥ 1) ,

H ′

n(x) = 2nHn−1(x) (n ≥ 1) ,

H ′′

n(x) − 2xH ′

n(x) + 2nHn(x) = 0 (n ≥ 0) .

19. Consider the eigenvalue problem

−d2u

dx2
+ x2u = λu .

Make the substitution u(x) = e−x2/2v(x) and show, using the recurrence relations of the previous
problem, that the resulting equation is solved by the Hermite polynomials provided λ takes certain
values.

20. Prove that
∫ ∞

−∞

exp[−(x − y)2] Hn(x) dx = (2y)n
√

π .
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