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Implementation of the Simplified DLX

1 Goal: design a circuit that can execute any DLX program
stored in memory.

2 This circuit is a stored program computer also known as a
computer with a von Neumann architecture based on von
Neumann’s paper from 1945.

3 A practical computer based on Turing’s idea of a universal
Turing machine.

4 First stored program computers built in 1948-1949 (SSEM,
Manchester Mark 1, EDSAC)
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Datapath and Control

The implementation consists of two parts:

a finite state machine, called the control, and

a circuit containing registers and functional modules, called
the datapath.

The separation of the design into a controller and a datapath
greatly simplifies the task of designing the simplified DLX.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



The Datapath of the simplified DLX machine
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The Outside World: The Memory Controller

We begin with the “outside world”, that is the (external) memory.
Recall that both the executed program and the data are stored in
the memory.

The memory controller is a circuit that is positioned between
the DLX and the main memory.

It is a synchronous circuit that receives memory access
requests from the DLX.

The main problem related to a memory access is that it
requires an unpredictable number of cycles to complete.
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Memory Controller - discussion

Accessing a register always takes a single clock cycle,
however, loading or storing in the external memory typically
requires several cycles.

Why? Organization of the memory, also called the memory
hierarchy. This organization involves caches, cache misses,
page faults, and other issues that are beyond the scope of this
course.

The fact that the number of clock cycles required to complete
a memory is not fixed requires a special signal, called the busy
signal.

The busy signal is an output of the memory controller that
tells the DLX whether the memory is still executing the
previous memory access.

The DLX may issue a new memory access request only if the
busy signal is low.
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Memory Controller - Schematic
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The busses are connected to the memory controller as follows.

The bus AO[31 : 0] is connected to the Address[31 : 0] input
of the memory controller.

The bus DO[31 : 0] is connected to the IN[31 : 0] input of the
memory controller.

The bus DI [31 : 0] is connected to the OUT [31 : 0] input of
the memory controller.
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The Memory Controller: Definition

Definition

The Memory Controller is a synchronous circuit specified as
follows:

Input: IN[31 : 0],Address[31 : 0] ∈ {0, 1}32, MR, MW ∈ {0, 1},
and a clock clk.

Output: OUT [31 : 0] ∈ {0, 1}32, busy ∈ {0, 1}.

Functionality: 1 The input may change in cycle t only if
busy(t) = 0.

2 If busy(t) = 0 and busy(t − 1) = 1, then the
output must satisfy the following conditions:

1 If MR(t − 1) = 1 then

OUT (t)← M [〈Address(t − 1)〉](t − 1).

2 If MW(t − 1) = 1 then

M [〈Address(t − 1)〉](t)← IN(t − 1).
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Registers

All the registers of the simplified DLX datapath are 32-bits wide,
and are as follows.

1 There are 32 General Purpose Registers (GPR): R0 to R31.

2 The Instruction Register (IR) is, also, a clock enabled parallel
load register. This register is part of the IR environment.

3 The remaining registers: Program Counter (PC), Memory
Address Register (MAR), Memory Data Register (MDR), and
registers A,B and C are all clock enabled parallel load
registers. Each of these registers has a distinct clock enable
signal that is computed by an FSM called the DLX control .
The clock enable signals are called PCCE, MARCE, MDRCE,

ACE, BCE, CCE.
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ALU environment

The ALU is a combinational circuit that supports, addition and
subtraction, bitwise logical instructions, and comparison
instructions.

32

32

ALU
5 type[4:0]

Z[31:0]

32

X[31:0] Y[31:0]

or(32)
xor(32)

add-sub(32) comp(32)
and(32)

The main three subcircuits of the ALU are: (1) 32-bit
Adder/subtractor, add-sub(32), (2) bitwise logical operations,
xor,or,and, and (3) a comparator, comp(32). Note that the
comparator is fed by the outputs of the adder/subtractor circuit.
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ALU Environment

Definition

An ALU environment is a combinational circuit specified as follows:

Input: x [31 : 0], y [31 : 0] ∈ {0, 1}32, type ∈ {0, 1}5.

Output: z [31 : 0] ∈ {0, 1}32.

Functionality:

~z
△
= ftype(~x , ~y) ,

We now need to describe how the ALU functions are encoded...
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Encoding of ALU functions

type[4 : 2] type[1] type[0] ftype(~x , ~y )

001 1 0 [~x ] > [~y ]
010 0 0 [~x ]− [~y ] (mod 232)
010 1 0 [~x ] = [~y ]
011 0 0 [~x ] + [~y ] (mod 232)
011 1 0 [~x ] ≥ [~y ]
100 0 0 xor(~x , ~y)
100 1 0 [~x ] < [~y ]
101 0 0 or(~x , ~y)
101 1 0 [~x ] 6= [~y ]
110 0 0 and(~x , ~y)
110 1 0 [~x ] ≤ [~y ]
*** * 1 [~x ] + [~y ] (mod 232)
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ALU - functionality

1 The outcome of a comparison is one or zero depending on
whether the expression is true.

2 The logical operations are bitwise.

3 The comparison operations return either 032 or 031 ◦ 1.

4 The input type[0] indicates if the function is addition. It is
used, for example, to increment the program counter.

5 The input type[1] indicates if the function is comparison.
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ALU - connections in the datapath

The datapath busses are connected to the ALU as follows.

The bus S1[31 : 0] is connected to the x [31 : 0] input of the
ALU.

The bus S2[31 : 0] is connected to the y [31 : 0] input of the
ALU.

The bus Z2[31 : 0] is connected to the z [31 : 0] output of the
ALU.

The signals type[4 : 0] are outputs of the FSM called the DLX
control.
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Shifter Environment

The shifter is a 32-bit bi-directional logical shifter by one
position.

Recall that lls(~x , i) denotes the logical left shift of ~x by i

positions, and that

lrs(~x , i) denotes the logical right shift of ~x by i positions.
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Shifter Environment: Definition

Definition

The shifter environment is a combinational circuit defined as
follows:

Input:

x [31 : 0] ∈ {0, 1}32,
shift ∈ {0, 1}, and
right ∈ {0, 1}.

Output: y [n − 1 : 0] ∈ {0, 1}32.

Functionality: The output ~y satisfies

~y
△
=











~x , if shift = 0,

lls(~x , 1), if shift = 1, right = 0,

lrs(~x , 1), if shift = 1, right = 1.

The shifter also implements the identity function: route a word
through the shifter in the execution of some instructions.
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Instruction Register (IR) environment

The IR environment holds the 32 bits of the current
instruction.

When executing an I-type instruction, the IR environment
outputs the sign extension of the immediate field, and the
indices of RS1 and RD.

When executing an R-type instruction, the IR environment
outputs the indices of RS1,RS2 and RD.

The RD field is positioned in a different “places”.

Selecting the right bits requires a circuit that computes
whether the instruction is an I-type instruction. We delegate
this computation to the DLX control, and denote the outcome
of this computation as the Itype signal.
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IR environment - specification

Definition

The IR environment is a synchronous circuit defined as follows:

Input: DI [31 : 0] ∈ {0, 1}32, IRce, JLINK, Itype ∈ {0, 1}
and a clock signal clk.

Output: An instruction Inst[31 : 0], sign extension of the
immediate constant Imm[31 : 0], and the GPR
addresses
Aadr[4 : 0], Badr[4 : 0], Cadr[4 : 0] ∈ {0, 1}5.
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IR environment - specification

Definition

[Functionality:]

Inst(t + 1) =

{

Inst(t) if IRce(t) = 0,

DI (t) if IRce(t) = 1.

Imm[31 : 0](t) = sign extension of Inst[15 : 0](t) to 32 bits.

Aadr[4 : 0](t) = Inst[25 : 21](t),

Badr[4 : 0](t) = Inst[20 : 16](t),

Cadr[4 : 0](t) =











11111 if JLINK(t) = 1,

Inst[20 : 16](t), if Itype(t) = 1 and JLINK(t) = 0,

Inst[15 : 11](t), otherwise.

The IR environment is implemented by a parallel load clock
enabled register and a 3 : 1-mux to select the value of Cadr.
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IR environment - connections to datapath

Inputs and outputs of IR environment are connected as follows.

The datapath bus DI [31 : 0] is connected to the DI [31 : 0]
input of the IR environment.

The Imm[31 : 0] output of the IR environment is connected to
the S2MUX.

The outputs Aadr, Badr and Cadr are input to the GPR
environment.

The output Inst[31 : 0] is in input to the FSM called the
DLX control.

The inputs Itype, JLINK and IRce are outputs of the DLX
control.

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Program Counter (PC) environment

The PC environment is simply a 32-bit clock enabled parallel load
register.
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The GPR Environment

There are 32 registers in the GPR Environment, called
R0,R1, . . . ,R31. The GPR Environment (or GPR, for short) can
support one of two operations in each clock cycle.

1 Write the value of input C in Ri , where i = 〈Cadr〉.

2 Read the contents of the registers Ri and Rj , where
i = 〈Aadr〉 and j = 〈Badr〉.
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The GPR Environment: Definition

Definition

A GPR is a synchronous circuit specified as follows.

Inputs: GPR addresses (output by the IR environment)
Aadr[4 : 0], Badr[4 : 0], Cadr[4 : 0] ∈ {0, 1}5, a data
input C [31 : 0] ∈ {0, 1}32, a write-enable signal
GPR WE ∈ {0, 1} and a clock signal clk.

Output: A[31 : 0],B [31 : 0] ∈ {0, 1}32, and a flag
AEQZ ∈ {0, 1}.

Functionality : Let R[i ] denote the ith register in the GPR. The
functionality of a GPR is specified by the following
program:
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Definition (Cont.)

1 data: array R[31 : 0] of 32-bit wide registers.

2 initialize: ∀i : R[i ]← 032.
3 For t = 0 to ∞ do

1 If GPR WE = 1 and 〈Cadr〉 6= 0, then

R[〈Cadr〉](t + 1)← ~C (t).

2 If GPR WE = 0 then

~A(t)← R[〈Aadr〉](t),

~B(t)← R[〈Badr〉](t),

AEQZ(t)←

{

1 if ~A(t) = 032,

0 otherwise.
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The GPR Environment: Implementation
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DLX Control

The control is an FSM that helps execute a DLX program. Loosely
speaking, it “tells” the datapath what to do in every clock cycle.
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A High Level View of the Execution Cycle

An execution of a DLX instruction requires multiple clock cycles.
It is common to consider the following steps in the execution of an
instruction:

1 Instruction Fetch. In this step the instruction to be executed
is copied from the main memory to the Instruction Register
(IR). Formally, in this step the following operation takes place:

IR ← M[〈PC 〉].

2 Instruction Decode. In this step the instruction stored in the
IR is decoded. Decoding means that the control decides what
actions should take place.

3 Execute. In this step the instruction is executed. For example,
in an add instruction, the additions takes place in this step.

4 Memory Access. In this step load and store instructions access
the main memory.

5 Write-back. In this step the result of an instruction that
computes a value is stored, if needed, in the GPR.
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DLX Control - a finite state machine

States

Input alphabet: each bit is called a control input

Output alphabet: each bit is called a control output

state transition function

output function
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States

The FSM has 19 states. We first list the states that correspond to
steps in the execution cycle:

1 Instruction Fetch. The Fetch state is the only state that deals
with instruction fetch.

2 Instruction Decode. The Decode state is the only state that
deals with instruction decode.

3 Execute. The states: Alu, TestI, AluI, and Shift deal with the
execute step.

4 Memory Access. The states Load and Store deal with memory
access.

5 Write-back. The states WBR and WBI deal with writing back
the result in the GPR.
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States - cont

There are additional states that do not belong to the standard
execution steps. These include the following states:

1 States that deal with the execution of branch and jump
instructions. These are the states: Branch, Btaken, JR, Save
PC, and JALR.

2 States that deal with load and store instructions. These are
the states: Address-Computation, CopyMDR2C, and
CopyGPR2MDR.

3 A sink state, called Halt, for stopping the execution.
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FSM inputs

Each bit of the input alphabet of the FSM is called a control input.
We list the control inputs as follows:

1 The current instruction Inst[31 : 0] that is an output of the
IR environment.

2 The AEQZ flag that indicates if A equals zero. This flag is an
output of the GPR environment.

3 The busy flag that is output by the memory controller.
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FSM Outputs

Each bit of the output alphabet of the FSM is called an control
output.

1 IRCE, PCCE, ACE, BCE, CCE, MARCE, MDRCE: clock
enable signals of the corresponding registers.

2 S1SEL[1:0], S2SEL[1:0], DINTSEL, MDRSEL, ADSEL:
select signals of the S1MUX, S2MUX, DINTMUX,
MDRMUX, and ADMUX selectors in the datapath.

3 ALUF[2:0], ADD, TEST: signals that are input to the ALU
environment, as follows: type[4 : 2]← ALUF[2 : 0],
type[1]← test, and type[0]← add. The value of ALUF[2 : 0]
is computed by

ALUF[2 : 0]←

{

opcode[2 : 0] if Inst is an I-type instruction

function[2 : 0] if Inst is an R-type instruction.

(1)
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FSM Outputs

1 SHIFT, RIGHT: signals that are input to the Shifter
environment.

2 Itype: indicates whether the current instruction is an I-type
instruction. The Itype signal is input to the IR environment.

3 JLINK: This signal is input to the IR environment. The signal
equals one if and only if the current instruction is a jalr

instruction.
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Summary of the control outputs

Signal Value Semantics

ALUf[2:0] Controls the functionality of ALU

Rce Register clock enable

S1sel[1:0] 00 PC
01 A
10 B
11 MDR

S2sel[1:0] 00 B
01 IR
10 0
11 1

DINTsel 0 ALU
1 Shifter

MDRsel 0 DINT
1 DI

ADsel 0 PC
1 MAR
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Summary of the control outputs - cont

Signal Value Semantics

shift explicit Shift-Instruction

right Shift to the right

add Forces an addition

test Forces a test (in the ALU)

MR Memory Read

MW Memory Write

GPR WE GPR write enable

itype Itype-Instruction

jlink jump and link
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Output function

Name RTL Instruction Active Control Outputs

Fetch IR = M[PC ] MR, IRce

Decode A = RS1, Ace,
B = RS2 Bce,
PC = PC + 1 S2sel[1], S2sel[0], add, PCce

Alu C = A op B S1sel[0], Cce, active bits in ALUF[2:0]

TestI C = (A rel imm) S1sel[0], S2sel[0], Cce, test, Itype,
active bits in ALUF[2:0]

AluI(add) C = A + imm S1sel[0], S2sel[0], Cce, add, Itype

Shift C = A shift sa S1sel[0], Cce
sa = 1, (−1) DINTsel, shift (,right)

Adr.Comp MAR = A + imm S1sel[0], S2sel[0], MARce, add

Load MDR = M[MAR] MDRce, ADsel, MR, MDRsel

Store M[MAR] = MDR ADsel, MW
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Output function - cont

Name RTL Instruction Active Control Outputs

CopyMDR2C C = MDR(≫ 0) S1sel[0], S1sel[1], S2sel[1], DINTsel,

CopyGPR2MDR MDR = B(≪ 0) S1sel[1], S2sel[1], DINTsel, MDRce

WBR RD = C (R-type) GPR WE

WBI RD = C (I-type) GPR WE, Itype

Branch branch taken?

Btaken PC = PC + imm S2sel[0], add, PCce

JR PC = A S1sel[0], S2sel[1], add, PCce

Save PC C = PC S2sel[1], add, Cce

JALR PC = A S1sel[0], S2sel[1], add, PCce,
R31 = C GPR WE, jlink

Guy Even, Moti Medina Digital Logic Design: a rigorous approach c©



Transition Function

The out-degree of most the control states is one. This means that
the FSM transitions to the only “next state” independent of the
input to the FSM. Only six states have an out-degree greater than
one. We elaborate on the transitions from these six states.

1 The Fetch, Load and Store states have a self-loop labeled by
busy. This means, that if the input busy equals one, then the
FSM stays in the same state.

2 The Branch state has two possible transitions. The transition
to state BTaken is labeled bt, and the transition back to
Fetch is labeled not(bt). The value of bt is computed by the
control and equals one if the condition of a conditional branch
is satisfied. It is computed by

bt = AEQZ⊕ Inst[26].
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Transition Function - cont

1 The Address-Computation has two possible transitions. The
transition to CopyGPR2MDR is labeled is− store, and
transition to Load is labeled notis− store. The value of
is− store is computed by the control and equals one if the
current instruction is a store-word (sw) instruction.

2 The Decode state has 10 possible transitions. These
transitions are labeled D1− D10. Exactly one of these signals
equals one, so that the transition is well defined.
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Register Transfer Language (RTL) Instructions

The control governs the behavior of the datapath by its
outputs called control outputs.

The simplest control signal is a clock enable signal of a
register in the datapath.

In each state, the control tells which registers should store
new values.

We specify this action by a Register Transfer Language (RTL)
instruction.

The operands of an RTL instruction are the datapath
registers, and the calculations are performed by the
combinational circuits in the datapath.
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RTL - example

IR = M[PC ],

Means: copy the contents of M[PC ] to the IR .

Reading from the value stored in M[PC ] is performed by
setting a control signal MR to be high.

Once the result of the read is ready, the value is stored in the
IR register since the clock enable of the IR register is set to
high.

We denote this clock enable signal by IRCE.
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Step-by-step execution of load-word

Sequence of control states:

busy

D5

WBI

busy

FETCH

DECODE

ADDRESSCMP

LOAD

COPYMDR2C

not(busy)

not(is-store)

not(busy)
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What happens in each state? FETCH: IR = M [PC ]
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What happens in each state? DECODE:
A = RS1, B = RS2, PC = PC + 1
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What happens in each state? ADDRESSCMP:
MAR = A + imm
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What happens in each state? LOAD: MDR = M [MAR]
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What happens in each state? COPYMDR2C: C = MDR
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What happens in each state? WBI: RD = C
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Summary

We described every module in the datapath by specifying its
inputs, outputs and functionality.

We described the control of the DLX by its state machine.

We “glued” all these components by describing which RTL
instruction is executed in every step.

We executed a DLX instruction step by step.

Full details of an implementation of the simplified DLX.

There is no need to learn this implementation by heart. It is
merely a suggestion for an implementation.

Try to understand the underlying principles. The best way to
see how the design works is by executing all the instructions
step by step.
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