Reliability and Availability Engineering: Modeling, Analysis, Applications

Errata Corrige

Kishor S. Trivedi

Department of Electrical Engineering, Duke University, Durham, NC, 27706, USA

Andrea Bobbio

DiSit, Università del Piemonte Orientale, 15100 Alessandria, Italy

Errata Corrige, Page 118 - The second part of Equation 4.30 with two i.i.d. components with distribution $\text{EXP}(\lambda)$, is not correct. The correct formula is:

$$R_{\rm p}(t) = 2e^{-\lambda t} - e^{-2\lambda t},$$

 ${
m MTTF} = rac{3}{2\lambda}.$

Errata Corrige, Page 123 - The formula for $R_{sys}(t)$ in Example 4.14 is not correct. The correct formula is:

$$R_{svs}(t) = 1 - (1 - R_i(t))^3$$

Errata Corrige, **Page 142** - **Example 4.27** Consider the non-series-parallel system of Figure 4.25. We condition on component 2 and apply Eq. (4.63).. The term $P\{S|X_2\}$ is the probability of the system functioning given that component 2 is functioning. Observe that under the assumption that component 2 is functioning the system is equivalent to the parallel composition of components 4 and 5. Therefore, using Eq. (4.24) we get

$$P\{S|X_2\} = 1 - (1 - R_4(t))(1 - R_5(t)) = R_4(t) + R_5(t) - R_4(t)R_5(t). \tag{4.64}$$

To compute $P\{S|\overline{X}_2\}$, observe that given that component 2 is down the system is equivalent to the series of components 1 and 4 in parallel with the series of components 3 and 5. Thence:

$$P\{S|\overline{X}_2\} = 1 - (1 - R_1(t)R_4(t))(1 - R_3(t)R_5(t))$$

= $R_1(t)R_4(t) + R_3(t)R_5(t) - R_1(t)R_3(t)R_4(t)R_5(t)$. (4.65)

Combining Eqs. 4.64 and 4.65, we have

$$R_S(t) = [R_4(t) + R_5(t) - R_4(t)R_5(t)]R_2(t) + [R_1(t)R_4(t) + R_3(t)R_5(t) - R_1(t)R_3(t)R_4(t)R_5(t)](1 - R_2(t)).$$

Errata Corrige, Page 143: Problem 4.18 - The correct formulation is:

For the non-series-parallel system of Figure 4.25, derive expressions for the reliability importance of all the five components. Next, assume that the time to failure of component i is Weibull distributed with scale parameter hi and common shape parameter b. Write down an expression for the system MTTF.

Errata Corrige, Page 145 - The formula of the reliability for Case 1 is

Case 1, $k < n_2$:

$$R_{\text{Case 1}} = 1 - \sum_{i=0}^{k-1} \sum_{j=0}^{k-1-i} \binom{n_1}{i} R_1^i (1 - R_1)^{n_1 - i} \binom{n_2}{j} R_2^j (1 - R_2)^{n_2 - j}.$$

Errata Corrige, Page 293 - The conditional distribution of *Y* given X = 0 is $EXP((4 + \alpha)\lambda)$. Thus the correct conditional LST in the second line of Eq. (8.5) is:

$$\mathscr{L}_{Y|X}(s|X=0) = \frac{(4+\alpha)\lambda}{s+(4+\alpha)\lambda}.$$

The LST in Eq. (8.6) needs to be corrected accordingly, and using the theorem of total probability, the first line of Eq. (8.6) becomes:

$$\mathscr{L}_{Y}(s) = \frac{4c + \alpha}{4 + \alpha} \frac{(4 + \alpha)\lambda}{s + (4 + \alpha)\lambda} \frac{4\lambda}{s + 4\lambda} + \frac{4(1 - c)}{4 + \alpha} \frac{(4 + \alpha)\lambda}{s + (4 + \alpha)\lambda}$$

Errata Corrige, Page 365: Section 10.1.1 - The correct expression for the probability $\pi_i(t)$ at time t is:

$$\pi_j(t) = \pi_j(0)e^{q_{jj}t} + \int_0^t \sum_{k,k \neq j} \pi_k(x)q_{kj}e^{q_{jj}(t-x)}dx.$$

Errata Corrige, Page 381: Expression (10.62) - The correct expression (10.62) is:

$$E[T_a^i] = (-1)^i \frac{d^i f_a^*(s)}{d s^i} \bigg|_{s=0} = (-1)^i i! \boldsymbol{\pi}_{\mathsf{u}}(0) (\boldsymbol{Q}_{\mathsf{u}})^{-i} \boldsymbol{e}^{\mathsf{T}}.$$

Errata Corrige, Page 404: Initial probability vector of *Case 3* - The initial probability vector reported in the book for *Case 3* of Example 10.27, is not correct. The correct initial probability vector is given below.

$$\begin{split} \pi_1(0) &= c_{\rm e}^2 c_{\rm d}, \\ \pi_2(0) &= 2 \left(1 - c_{\rm e} \right) c_{\rm e} c_{\rm d}, \\ \pi_3(0) &= c_{\rm e}^2 \left(1 - c_{\rm d} \right), \\ \pi_4(0) &= c_{\rm d} \left(1 - c_{\rm e} \right)^2, \\ \pi_5(0) &= 2 c_{\rm e} \left(1 - c_{\rm e} \right) \left(1 - c_{\rm d} \right), \\ \pi_6(0) &= \left(1 - c_{\rm e} \right)^2 \left(1 - c_{\rm d} \right). \end{split}$$

Verify that
$$\sum_{i=0}^6 \pi_i(0) = 1$$

Errata Corrige, Page 635: Table 17.1 The correct Table 17.1 is reported below.

Table 17.1 Nearly independent approximation for shared repair with travel time

Subsys.	Up state	Repair state	Updated repair rate	Indep. repair availability	Shared repair availability
	$A_{ m Sys}$	q	μ'	$A_{\rm indep.repair}$	$A_{\rm shared repair}$
P	$\pi_{11} + \pi_{01} + \pi_{10}$	π_{0t}	μ_{P}	0.997 7773	0.997 7784
V	$\pi_2 + \pi_{1u} + \pi_{1t}$	$\pi_{1t} + \pi_{0t}$	$\mu_{\rm V}(1-Q_{\rm P})$	0.9997989	0.9997989
S	$\pi_3 + \pi_{2u} + \pi_{2t}$	$\pi_{2t} + \pi_{1t} + \pi_{0t}$	$\mu_{\rm S}(1-Q_{\rm P})$	0.999 9799	0.999 9798
			$(1 - Q_{\rm V})$		
L	$\pi_{2u} + \pi_{1u} + \pi_{1t}$	$\pi_{1t}+\pi_{0t}$	$\mu_{\rm L}(1-Q_{\rm P})$	0.999 6976	0.999 6967
			$(1-Q_{\rm V})(1-Q_{\rm S})$		